Over the past few decades, education systems, especially in higher education, have been redefined. Such reforms inevitably require reconsideration of operational notions and definitions of quality, along with a number of related concepts. This reconsideration aligns with the core of higher education reforms: improving efficacy and compatibility with emerging social demands while adapting to competitiveness and accountability trends. As primary players in the teaching and learning process, online tutors have a protagonistic role and, therefore, must be equipped with a suitable set of competencies and attributes in addition to content knowledge. This quantitative research aims to analyze the perceptions of 250 online tutors working in European higher education institutions, distributed in 5 knowledge areas: Business, Education, Humanities, Sciences and Health. This descriptive and exploratory nonexperimental study reveals the technological and pedagogical skills and competencies that online tutors consider fundamental for effective online teaching and proposes professional development actions to ensure quality online teaching.
The challenges we collectively face, such as climate change, are characterized by more complexity, interdependence, and dynamism than is common for educational practice. This presents a challenge for (university) education. These transition challenges are often described as wicked or VUCA (Volatile, Uncertain, Complex, and Ambiguous) problems. In response, educational innovations that are inspired by ecology such as living labs are starting to emerge, but little is known about how learners engage within and with these more ecological forms of education. This work is an exploratory study into how learners navigate VUCA learning environments linked to tackling sustainability transition challenges, with a focus on the positive qualities of these experiences. This is done through interpretative phenomenological analysis (IPA) of seven students (using semi-structured interviews) of the MSC Metropolitan Analysis, Design and Engineering program, a joint degree from Wageningen University and Delft University of Technology in the Netherlands. The main findings, which are both psychological and educational, of this exploration include openness to new experiences (1), flexibility (2), a process appreciation of learning (3), a desire to create a positive impact on one’s direct biophysical environment (4) and society (5). In addition, we discuss the potential limitations of the malleability of these different qualities and propose future avenues for research into ecological learning for universities. This work closes by highlighting recommendations for educators to consider when designing or engaging in ecological forms of higher education that connect students to sustainability transitions.
Author supplied: Within the Netherlands the interest for sustainability is slowly growing. However, most organizations are still lagging behind in implementing sustainability as part of their strategy and in developing performance indicators to track their progress; not only in profit organizations but in higher education as well, even though sustainability has been on the agenda of the higher educational sector since the 1992 Earth Summit in Rio, progress is slow. Currently most initiatives in higher education in the Netherlands have been made in the greening of IT (e.g. more energy efficient hardware) and in implementing sustainability as a competence in curricula. However if we look at the operations (the day to day processes and activities) of Dutch institutions for higher education we just see minor advances. In order to determine what the best practices are in implementing sustainable processes, We have done research in the Netherlands and based on the results we have developed a framework for the smart campus of tomorrow. The research approach consisted of a literature study, interviews with experts on sustainability (both in higher education and in other sectors), and in an expert workshop. Based on our research we propose the concept of a Smart Green Campus that integrates new models of learning, smart sharing of resources and the use of buildings and transport (in relation to different forms of education and energy efficiency). Flipping‐the‐classroom, blended learning, e‐learning and web lectures are part of the new models of learning that should enable a more time and place independent form of education. With regard to smart sharing of resources we have found best practices on sharing IT‐storage capacity among universities, making educational resources freely available, sharing of information on classroom availability and possibilities of traveling together. A Smart Green Campus is (or at least is trying to be) energy neutral and therefore has an energy building management system that continuously monitors the energy performance of buildings on the campus. And the design of the interior of the buildings is better suited to the new forms of education and learning described above. The integrated concept of Smart Green Campus enables less travel to and from the campus. This is important as in the Netherlands about 60% of the CO2 footprint of a higher educational institute is related to mobility. Furthermore we advise that the campus is in itself an object for study by students and researchers and sustainability should be made an integral part of the attitude of all stakeholders related to the Smart Green Campus. The Smart Green Campus concept provides a blueprint that Dutch institutions in higher education can use in developing their own sustainability strategy. Best practices are shared and can be implemented across different institutions thereby realizing not only a more sustainable environment but also changing the attitude that students (the professionals of tomorrow) and staff have towards sustainability.
With increasing penetration rates of driver assistance systems in road vehicles, powerful sensing and processing solutions enable further automation of on-road as well as off-road vehicles. In this maturing environment, SMEs are stepping in and education needs to align with this trend. By the input of student teams, HAN developed a first prototype robot platform to test automated vehicle technology in dynamic road scenarios that include VRUs (Vulnerable Road Users). These robot platforms can make complex manoeuvres while carrying dummies of typical VRUs, such as pedestrians and bicyclists. This is used to test the ability of automated vehicles to detect VRUs in realistic traffic scenarios and exhibit safe behaviour in environments that include VRUs, on public roads as well as in restricted areas. Commercially available VRU-robot platforms are conforming to standards, making them inflexible with respect to VRU-dummy design, and pricewise they are far out of reach for SMEs, education and research. CORDS-VTS aims to create a first, open version of an integrated solution to physically emulate traffic scenarios including VRUs. While analysing desired applications and scenarios, the consortium partners will define prioritized requirements (e.g. robot platform performance, dummy types and behaviour, desired software functionality, etc.). Multiple robots and dummies will be created and practically integrated and demonstrated in a multi-VRU scenario. The aim is to create a flexible, upgradeable solution, published fully in open source: The hardware (robot platform and dummies) will be published as well-documented DIY (do-it-yourself) projects and the accompanying software will be published as open-source projects. With the CORDS-VTS solution, SME companies, researchers and educators can test vehicle automation technology at a reachable price point and with the necessary flexibility, enabling higher innovation rates.
The project aims to improve palliative care in China through the competence development of Chinese teachers, professionals, and students focusing on the horizontal priority of digital transformation.Palliative care (PC) has been recognised as a public health priority, and during recent years, has seen advances in several aspects. However, severe inequities in the access and availability of PC worldwide remain. Annually, approximately 56.8 million people need palliative care, where 25.7% of the care focuses on the last year of person’s life (Connor, 2020).China has set aims for reaching the health care standards of the developed countries by 2030 through the Healthy China Strategy 2030, where one of the improvement areas in health care includes palliative care, thus continuing the previous efforts.The project provides a constructive, holistic, and innovative set of actions aimed at resulting in lasting outcomes and continued development of palliative care education and services. Raising the awareness of all stakeholders on palliative care, including the public, is highly relevant and needed. Evidence based practice guidelines and education are urgently required for both general and specialised palliative care levels, to increase the competencies for health educators, professionals, and students. This is to improve the availability and quality of person-centered palliative care in China. Considering the aging population, increase in various chronic illnesses, the challenging care environment, and the moderate health care resources, competence development and the utilisation of digitalisation in palliative care are paramount in supporting the transition of experts into the palliative care practice environment.General objective of the project is to enhance the competences in palliative care in China through education and training to improve the quality of life for citizens. Project develops the competences of current and future health care professionals in China to transform the palliative care theory and practice to impact the target groups and the society in the long-term. As recognised by the European Association for Palliative Care (EAPC), palliative care competences need to be developed in collaboration. This includes shared willingness to learn from each other to improve the sought outcomes in palliative care (EAPC 2019). Since all individuals have a right to health care, project develops person-centered and culturally sensitive practices taking into consideration ethics and social norms. As concepts around palliative care can focus on physical, psychological, social, or spiritual related illnesses (WHO 2020), project develops innovative pedagogy focusing on evidence-based practice, communication, and competence development utilising digital methods and tools. Concepts of reflection, values and views are in the forefront to improve palliative care for the future. Important aspects in project development include health promotion, digital competences and digital health literacy skills of professionals, patients, and their caregivers. Project objective is tied to the principles of the European Commission’s (EU) Digital Decade that stresses the importance of placing people and their rights in the forefront of the digital transformation, while enhancing solidarity, inclusion, freedom of choice and participation. In addition, concepts of safety, security, empowerment, and the promotion of sustainable actions are valued. (European Commission: Digital targets for 2030).Through the existing collaboration, strategic focus areas of the partners, and the principles of the call, the PalcNet project consortium was formed by the following partners: JAMK University of Applied Sciences (JAMK ), Ramon Llull University (URL), Hanze University of Applied Sciences (HUAS), Beijing Union Medical College Hospital (PUMCH), Guangzhou Health Science College (GHSC), Beihua University (BHU), and Harbin Medical University (HMU). As project develops new knowledge, innovations and practice through capacity building, finalisation of the consortium considered partners development strategy regarding health care, (especially palliative care), ability to create long-term impact, including the focus on enhancing higher education according to the horizontal priority. In addition, partners’ expertise and geographical location was also considered important to facilitate long-term impact of the results.Primary target groups of the project include partner country’s (China) staff members, teachers, researchers, health care professionals and bachelor level students engaging in project implementation. Secondary target groups include those groups who will use the outputs and results and continue in further development in palliative care upon the lifetime of the project.
Examining in-class activities to facilitate academic achievement in higher educationThere is an increasing interest in how to create an effective and comfortable indoor environment for lecturers and students in higher education. To achieve evidence-based improvements in the indoor environmental quality (IEQ) of higher education learning environments, this research aimed to gain new knowledge for creating optimal indoor environmental conditions that best facilitate in-class activities, i.e. teaching and learning, and foster academic achievement. The academic performance of lecturers and students is subdivided into short-term academic performance, for example, during a lecture and long-term academic performance, during an academic course or year, for example. First, a systematic literature review was conducted to reveal the effect of indoor environmental quality in classrooms in higher education on the quality of teaching, the quality of learning, and students’ academic achievement. With the information gathered on the applied methods during the literature review, a systematic approach was developed and validated to capture the effect of the IEQ on the main outcomes. This approach enables research that aims to examine the effect of all four IEQ parameters, indoor air quality, thermal conditions, lighting conditions, and acoustic conditions on students’ perceptions, responses, and short-term academic performance in the context of higher education classrooms. Next, a field experiment was conducted, applying the validated systematic approach, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. Finally, a qualitative case study gathered lecturers’ and students’ perceptions related to the IEQ. Furthermore, how these users interact with the environment to maintain an acceptable IEQ was studied.During the systematic literature review, multiple scientific databases were searched to identify relevant scientific evidence. After the screening process, 21 publications were included. The collected evidence showed that IEQ can contribute positively to students’ academic achievement. However, it can also affect the performance of students negatively, even if the IEQ meets current standards for classrooms’ IEQ conditions. Not one optimal IEQ was identified after studying the evidence. Indoor environmental conditions in which students perform at their best differ and are task depended, indicating that classrooms should facilitate multiple indoor environmental conditions. Furthermore, the evidence provides practical information for improving the design of experimental studies, helps researchers in identifying relevant parameters, and lists methods to examine the influence of the IEQ on users.The measurement methods deduced from the included studies of the literature review, were used for the development of a systematic approach measuring classroom IEQ and students’ perceived IEQ, internal responses, and short-term academic performance. This approach allowed studying the effect of multiple IEQ parameters simultaneously and was tested in a pilot study during a regular academic course. The perceptions, internal responses, and short-term academic performance of participating students were measured. The results show associations between natural variations of the IEQ and students’ perceptions. These perceptions were associated with their physiological and cognitive responses. Furthermore, students’ perceived cognitive responses were associated with their short-term academic performance. These observed associations confirm the construct validity of the composed systematic approach. This systematic approach was then applied in a field experiment, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. A field study, with a between-groups experimental design, was conducted during a regular academic course in 2020-2021 to analyze the effect of different acoustic, lighting, and indoor air quality (IAQ) conditions. First, the reverberation time was manipulated to 0.4 s in the intervention condition (control condition 0.6 s). Second, the horizontal illuminance level was raised from 500 to 750 lx in the intervention condition (control condition 500 lx). These conditions correspond with quality class A (intervention condition) and B (control condition), specified in Dutch IEQ guidelines for school buildings (2015). Third, the IAQ, which was ~1100 ppm carbon dioxide (CO2), as a proxy for IAQ, was improved to CO2 concentrations under 800 ppm, meeting quality class A in both conditions. Students’ perceptions were measured during seven campaigns with a questionnaire; their actual cognitive and short-term academic performances were evaluated with validated tests and an academic test, composed by the lecturer, as a subject-matter-expert on the taught topic, covered subjects discussed during the lecture. From 201 students 527 responses were collected and analyzed. A reduced RT in combination with raised HI improved students’ perceptions of the lighting environment, internal responses, and quality of learning. However, this experimental condition negatively influenced students’ ability to solve problems, while students' content-related test scores were not influenced. This shows that although quality class A conditions for RT and HI improved students’ perceptions, it did not influence their short-term academic performance. Furthermore, the benefits of reduced RT in combination with raised HI were not observed in improved IAQ conditions. Whether the sequential order of the experimental conditions is relevant in inducing these effects and/or whether improving two parameters is already beneficial, is unknownFinally, a qualitative case study explored lecturers’ and students’ perceptions of the IEQ of classrooms, which are suitable to give tutorials with a maximum capacity of about 30 students. Furthermore, how lecturers and students interact with this indoor environment to maintain an acceptable IEQ was examined. Eleven lecturers of the Hanze University of Applied Sciences (UAS), located in the northern part of the Netherlands, and twenty-four of its students participated in three focus group discussions. The findings show that lecturers and students experience poor thermal, lighting, acoustic, and IAQ conditions which may influence teaching and learning performance. Furthermore, maintaining acceptable thermal and IAQ conditions was difficult for lecturers as opening windows or doors caused noise disturbances. In uncomfortable conditions, lecturers may decide to pause earlier or shorten a lecture. When students experienced discomfort, it may affect their ability to concentrate, their emotional status, and their quality of learning. Acceptable air and thermal conditions in classrooms will mitigate the need to open windows and doors. This allows lecturers to keep doors and windows closed, combining better classroom conditions with neither noise disturbances nor related distractions. Designers and engineers should take these end users’ perceptions into account, often monitored by facility management (FM), during the renovation or construction of university buildings to achieve optimal IEQ conditions in higher education classrooms.The results of these four studies indicate that there is not a one-size fits all indoor environmental quality to facilitate optimal in-class activities. Classrooms’ thermal environment should be effectively controlled with the option of a local (manual) intervention. Classrooms’ lighting conditions should also be adjustable, both in light color and light intensity. This enables lecturers to adjust the indoor environment to facilitate in-class activities optimally. Lecturers must be informed by the building operator, for example, professionals of the Facility Department, how to change classrooms’ IEQ settings. And this may differ per classroom because each building, in which the classroom is located, is operated differently apart from the classroom location in the building, exposure to the environment, and its use. The knowledge that has come available from this study, shows that optimal indoor environmental conditions can positively influence lecturers’ and students’ comfort, health, emotional balance, and performance. These outcomes have the capacity to contribute to an improved school climate and thus academic achievement.