Integrating physical therapy sessions and an online application (e-Exercise) might support people with hip osteoarthritis (OA), knee OA, or both (hip/knee OA) in taking an active role in the management of their chronic condition and may reduce the number of physical therapy sessions. The objective of this study was to investigate the short- and long-term effectiveness of e-Exercise compared to usual physical therapy in people with hip/knee OA. The design was a prospective, single-blind, multicenter, superiority, cluster-randomized controlled trial. e-Exercise is a 3-month intervention in which about 5 face-to-face physical therapy sessions were integrated with an online application consisting of graded activity, exercise, and information modules. Usual physical therapy was conducted according to the Dutch physical therapy guidelines on hip and knee OA. Primary outcomes, measured at baseline after 3 and 12 months, were physical functioning and free-living physical activity. Secondary outcome measures were pain, tiredness, quality of life, self-efficacy, and the number of physical therapy sessions.
OBJECTIVES: to test the effects of an intervention involving sensor monitoring-informed occupational therapy on top of a cognitive behavioural treatment (CBT)-based coaching therapy on daily functioning in older patients after hip fracture.DESIGN, SETTING AND PATIENTS: three-armed randomised stepped wedge trial in six skilled nursing facilities, with assessments at baseline (during admission) and after 1, 4 and 6 months (at home). Eligible participants were hip fracture patients ≥ 65 years old.INTERVENTIONS: patients received care as usual, CBT-based occupational therapy or CBT-based occupational therapy with sensor monitoring. Interventions comprised a weekly session during institutionalisation, followed by four home visits and four telephone consultations over three months.MAIN OUTCOMES AND MEASURES: the primary outcome was patient-reported daily functioning at 6 months, assessed with the Canadian Occupational Performance Measure.RESULTS: a total of 240 patients (mean[SD] age, 83.8[6.9] years were enrolled. At baseline, the mean Canadian Occupational Performance Measure scores (range 1-10) were 2.92 (SE 0.20) and 3.09 (SE 0.21) for the care as usual and CBT-based occupational therapy with sensor monitoring groups, respectively. At six months, these values were 6.42 (SE 0.47) and 7.59 (SE 0.50). The mean patient-reported daily functioning in the CBT-based occupational therapy with sensor monitoring group was larger than that in the care as usual group (difference 1.17 [95% CI (0.47-1.87) P = 0.001]. We found no significant differences in daily functioning between CBT-based occupational therapy and care as usual.CONCLUSIONS AND RELEVANCE: among older patients recovering from hip fracture, a rehabilitation programme of sensor monitoring-informed occupational therapy was more effective in improving patient-reported daily functioning at six months than to care as usual.TRIAL REGISTRATION: Dutch National Trial Register, NTR 5716.
Knee joint instability is frequently reported by patients with knee osteoarthritis (KOA). Objective metrics to assess knee joint instability are lacking, making it difficult to target therapies aiming to improve stability. Therefore, the aim of this study was to compare responses in neuromechanics to perturbations during gait in patients with self-reported knee joint instability (KOA-I) versus patients reporting stable knees (KOA-S) and healthy control subjects.Forty patients (20 KOA-I and 20 KOA-S) and 20 healthy controls were measured during perturbed treadmill walking. Knee joint angles and muscle activation patterns were compared using statistical parametric mapping and discrete gait parameters. Furthermore, subgroups (moderate versus severe KOA) based on Kellgren and Lawrence classification were evaluated.Patients with KOA-I generally had greater knee flexion angles compared to controls during terminal stance and during swing of perturbed gait. In response to deceleration perturbations the patients with moderate KOA-I increased their knee flexion angles during terminal stance and pre-swing. Knee muscle activation patterns were overall similar between the groups. In response to sway medial perturbations the patients with severe KOA-I increased the co-contraction of the quadriceps versus hamstrings muscles during terminal stance.Patients with KOA-I respond to different gait perturbations by increasing knee flexion angles, co-contraction of muscles or both during terminal stance. These alterations in neuromechanics could assist in the assessment of knee joint instability in patients, to provide treatment options accordingly. Furthermore, longitudinal studies are needed to investigate the consequences of altered neuromechanics due to knee joint instability on the development of KOA.
Students in Higher Music Education (HME) are not facilitated to develop both their artistic and academic musical competences. Conservatoires (professional education, or ‘HBO’) traditionally foster the development of musical craftsmanship, while university musicology departments (academic education, or ‘WO’) promote broader perspectives on music’s place in society. All the while, music professionals are increasingly required to combine musical and scholarly knowledge. Indeed, musicianship is more than performance, and musicology more than reflection—a robust musical practice requires people who are versed in both domains. It’s time our education mirrors this blended profession. This proposal entails collaborative projects between a conservatory and a university in two cities where musical performance and musicology equally thrive: Amsterdam (Conservatory and University of Amsterdam) and Utrecht (HKU Utrechts Conservatorium and Utrecht University). Each project will pilot a joint program of study, combining existing modules with newly developed ones. The feasibility of joint degrees will be explored: a combined bachelor’s degree in Amsterdam; and a combined master’s degree in Utrecht. The full innovation process will be translated to a transferable infrastructural model. For 125 students it will fuse praxis-based musical knowledge and skills, practice-led research and academic training. Beyond this, the partners will also use the Comenius funds as a springboard for collaboration between the two cities to enrich their respective BA and MA programs. In the end, the programme will diversify the educational possibilities for students of music in the Netherlands, and thereby increase their professional opportunities in today’s job market.
The energy transition is a highly complex technical and societal challenge, coping with e.g. existing ownership situations, intrusive retrofit measures, slow decision-making processes and uneven value distribution. Large scale retrofitting activities insulating multiple buildings at once is urgently needed to reach the climate targets but the decision-making of retrofitting in buildings with shared ownership is challenging. Each owner is accountable for his own energy bill (and footprint), giving a limited action scope. This has led to a fragmented response to the energy retrofitting challenge with negligible levels of building energy efficiency improvements conducted by multiple actors. Aggregating the energy design process on a building level would allow more systemic decisions to happen and offer the access to alternative types of funding for owners. “Collect Your Retrofits” intends to design a generic and collective retrofit approach in the challenging context of monumental areas. As there are no standardised approaches to conduct historical building energy retrofits, solutions are tailor-made, making the process expensive and unattractive for owners. The project will develop this approach under real conditions of two communities: a self-organised “woongroep” and a “VvE” in the historic centre of Amsterdam. Retrofit designs will be identified based on energy performance, carbon emissions, comfort and costs so that a prioritisation strategy can be drawn. Instead of each owner investing into their own energy retrofitting, the neighbourhood will invest into the most impactful measures and ensure that the generated economic value is retained locally in order to make further sustainable investments and thus accelerating the transition of the area to a CO2-neutral environment.
Today, embedded devices such as banking/transportation cards, car keys, and mobile phones use cryptographic techniques to protect personal information and communication. Such devices are increasingly becoming the targets of attacks trying to capture the underlying secret information, e.g., cryptographic keys. Attacks not targeting the cryptographic algorithm but its implementation are especially devastating and the best-known examples are so-called side-channel and fault injection attacks. Such attacks, often jointly coined as physical (implementation) attacks, are difficult to preclude and if the key (or other data) is recovered the device is useless. To mitigate such attacks, security evaluators use the same techniques as attackers and look for possible weaknesses in order to “fix” them before deployment. Unfortunately, the attackers’ resourcefulness on the one hand and usually a short amount of time the security evaluators have (and human errors factor) on the other hand, makes this not a fair race. Consequently, researchers are looking into possible ways of making security evaluations more reliable and faster. To that end, machine learning techniques showed to be a viable candidate although the challenge is far from solved. Our project aims at the development of automatic frameworks able to assess various potential side-channel and fault injection threats coming from diverse sources. Such systems will enable security evaluators, and above all companies producing chips for security applications, an option to find the potential weaknesses early and to assess the trade-off between making the product more secure versus making the product more implementation-friendly. To this end, we plan to use machine learning techniques coupled with novel techniques not explored before for side-channel and fault analysis. In addition, we will design new techniques specially tailored to improve the performance of this evaluation process. Our research fills the gap between what is known in academia on physical attacks and what is needed in the industry to prevent such attacks. In the end, once our frameworks become operational, they could be also a useful tool for mitigating other types of threats like ransomware or rootkits.