Background: Knee and hip osteoarthritis (OA) among older adults account for substantial disability and extensive healthcare use. Effective pain coping strategies help to deal with OA. This study aims to determine the long-term relationship between pain coping style and the course of healthcare use in patients with knee and/or hip OA over 10 years. Methods: Baseline and 10-year follow-up data of 861 Dutch participants with early knee and/or hip OA from the Cohort Hip and Cohort Knee (CHECK) cohort were used. The amount of healthcare use (HCU) and pain coping style were measured. Generalized Estimating Equations were used, adjusted for relevant confounders. Results: At baseline, 86.5% of the patients had an active pain coping style. Having an active pain coping style was significantly (p = 0.022) associated with an increase of 16.5% (95% CI, 2.0–32.7) in the number of used healthcare services over 10 years. Conclusion: Patients with early knee and/or hip OA with an active pain coping style use significantly more different healthcare services over 10 years, as opposed to those with a passive pain coping style. Further research should focus on altered treatment (e.g., focus on self-management) in patients with an active coping style, to reduce HCU.
DOCUMENT
BACKGROUND: Patients with knee osteoarthritis can adapt their gait to unload the most painful knee joint in order to try to reduce pain and improve physical function. However, these gait adaptations can cause higher loads on the contralateral joints. The aim of the study was to investigate the interlimb differences in knee and hip frontal plane moments during gait in patients with knee osteoarthritis and in healthy controls.METHODS: Forty patients with knee osteoarthritis and 19 healthy matched controls were measured during comfortable treadmill walking. Frontal plane joint moments were obtained of both hip and knee joints. Differences in interlimb moments within each group were assessed using statistical parametric mapping and discrete gait parameters.FINDINGS: No interlimb differences were observed in patients with knee osteoarthritis and control subjects at group level. Furthermore, the patients presented similar interlimb variability as the controls. In a small subgroup (n = 12) of patients, the moments in the most painful knee were lower than in the contralateral knee, while the other patients (n = 28) showed higher moments in the most painful knee compared to the contralateral knee. However, no interlimb differences in the hip moments were observed within the subgroups.INTERPRETATION: Patients with knee osteoarthritis do not have interlimb differences in knee and hip joint moments. Patients and healthy subjects demonstrate a similar interlimb variability in the moments of the lower extremities. In this context, differences in knee pain in patients with knee osteoarthritis did not induce any interlimb differences in the frontal plane knee and hip moments.
DOCUMENT
Background: Osteoarthritis is one of the most common chronic joint diseases, mostly affecting the knee or hip through pain, joint stiffness and decreased physical functioning in daily life. Regular physical activity (PA) can help preserve and improve physical functioning and reduce pain in patients with osteoarthritis. Interventions aiming to improve movement behaviour can be optimized by tailoring them to a patients' starting point; their current movement behaviour. Movement behaviour needs to be assessed in its full complexity, and therefore a multidimensional description is needed. Objectives: The aim of this study was to identify subgroups based on movement behaviour patterns in patients with hip and/or knee osteoarthritis who are eligible for a PA intervention. Second, differences between subgroups regarding Body Mass Index, sex, age, physical functioning, comorbidities, fatigue and pain were determined between subgroups. Methods: Baseline data of the clinical trial 'e-Exercise Osteoarthritis', collected in Dutch primary care physical therapy practices were analysed. Movement behaviour was assessed with ActiGraph GT3X and GT3X+ accelerometers. Groups with similar patterns were identified using a hierarchical cluster analysis, including six clustering variables indicating total time in and distribution of PA and sedentary behaviours. Differences in clinical characteristics between groups were assessed via Kruskall Wallis and Chi2 tests. Results: Accelerometer data, including all daily activities during 3 to 5 subsequent days, of 182 patients (average age 63 years) with hip and/or knee osteoarthritis were analysed. Four patterns were identified: inactive & sedentary, prolonged sedentary, light active and active. Physical functioning was less impaired in the group with the active pattern compared to the inactive & sedentary pattern. The group with the prolonged sedentary pattern experienced lower levels of pain and fatigue and higher levels of physical functioning compared to the light active and compared to the inactive & sedentary. Conclusions: Four subgroups with substantially different movement behaviour patterns and clinical characteristics can be identified in patients with osteoarthritis of the hip and/or knee. Knowledge about these subgroups can be used to personalize future movement behaviour interventions for this population.
LINK
Students in Higher Music Education (HME) are not facilitated to develop both their artistic and academic musical competences. Conservatoires (professional education, or ‘HBO’) traditionally foster the development of musical craftsmanship, while university musicology departments (academic education, or ‘WO’) promote broader perspectives on music’s place in society. All the while, music professionals are increasingly required to combine musical and scholarly knowledge. Indeed, musicianship is more than performance, and musicology more than reflection—a robust musical practice requires people who are versed in both domains. It’s time our education mirrors this blended profession. This proposal entails collaborative projects between a conservatory and a university in two cities where musical performance and musicology equally thrive: Amsterdam (Conservatory and University of Amsterdam) and Utrecht (HKU Utrechts Conservatorium and Utrecht University). Each project will pilot a joint program of study, combining existing modules with newly developed ones. The feasibility of joint degrees will be explored: a combined bachelor’s degree in Amsterdam; and a combined master’s degree in Utrecht. The full innovation process will be translated to a transferable infrastructural model. For 125 students it will fuse praxis-based musical knowledge and skills, practice-led research and academic training. Beyond this, the partners will also use the Comenius funds as a springboard for collaboration between the two cities to enrich their respective BA and MA programs. In the end, the programme will diversify the educational possibilities for students of music in the Netherlands, and thereby increase their professional opportunities in today’s job market.
The growing demand for both retrofitting and refitting, driven by an aging global fleet and decarbonization efforts, including the need to accommodate alternative fuels such as LNG, methanol, and ammonia, offers opportunities for sustainability. However, they also pose challenges, such as emissions generated during these processes and the environmental impacts associated with the disposal of old components. The region Rotterdam and Drechtsteden form a unique Dutch maritime ecosystem of port logistics, shipbuilding, offshore operations, and innovation facilities, supported by Europe’s largest port and world-class infrastructure connecting global trade routes. The Netherlands’ maritime sector, including the sector concentrated in Zuid-Holland, is facing competition from subsidized Asian companies, leading to a steep decline in Europe’s shipbuilding market share from 45% in the 1980s to just 4% in 2023. Nonetheless, the shift toward climate-neutral ships presents economic opportunities for Dutch maritime companies. Thus, developing CE approaches to refitting is essential for promoting sustainability and addressing the pressing environmental and competitive challenges facing the sector and has led companies in the sector to establish the Open Joint Industry Project (OJIP) called Circolab of which this PD forms the core.
The energy transition is a highly complex technical and societal challenge, coping with e.g. existing ownership situations, intrusive retrofit measures, slow decision-making processes and uneven value distribution. Large scale retrofitting activities insulating multiple buildings at once is urgently needed to reach the climate targets but the decision-making of retrofitting in buildings with shared ownership is challenging. Each owner is accountable for his own energy bill (and footprint), giving a limited action scope. This has led to a fragmented response to the energy retrofitting challenge with negligible levels of building energy efficiency improvements conducted by multiple actors. Aggregating the energy design process on a building level would allow more systemic decisions to happen and offer the access to alternative types of funding for owners. “Collect Your Retrofits” intends to design a generic and collective retrofit approach in the challenging context of monumental areas. As there are no standardised approaches to conduct historical building energy retrofits, solutions are tailor-made, making the process expensive and unattractive for owners. The project will develop this approach under real conditions of two communities: a self-organised “woongroep” and a “VvE” in the historic centre of Amsterdam. Retrofit designs will be identified based on energy performance, carbon emissions, comfort and costs so that a prioritisation strategy can be drawn. Instead of each owner investing into their own energy retrofitting, the neighbourhood will invest into the most impactful measures and ensure that the generated economic value is retained locally in order to make further sustainable investments and thus accelerating the transition of the area to a CO2-neutral environment.