This article describes the relation between mental health and academic performance during the start of college and how AI-enhanced chatbot interventions could prevent both study problems and mental health problems.
Explainable Artificial Intelligence (XAI) aims to provide insights into the inner workings and the outputs of AI systems. Recently, there’s been growing recognition that explainability is inherently human-centric, tied to how people perceive explanations. Despite this, there is no consensus in the research community on whether user evaluation is crucial in XAI, and if so, what exactly needs to be evaluated and how. This systematic literature review addresses this gap by providing a detailed overview of the current state of affairs in human-centered XAI evaluation. We reviewed 73 papers across various domains where XAI was evaluated with users. These studies assessed what makes an explanation “good” from a user’s perspective, i.e., what makes an explanation meaningful to a user of an AI system. We identified 30 components of meaningful explanations that were evaluated in the reviewed papers and categorized them into a taxonomy of human-centered XAI evaluation, based on: (a) the contextualized quality of the explanation, (b) the contribution of the explanation to human-AI interaction, and (c) the contribution of the explanation to human- AI performance. Our analysis also revealed a lack of standardization in the methodologies applied in XAI user studies, with only 19 of the 73 papers applying an evaluation framework used by at least one other study in the sample. These inconsistencies hinder cross-study comparisons and broader insights. Our findings contribute to understanding what makes explanations meaningful to users and how to measure this, guiding the XAI community toward a more unified approach in human-centered explainability.
MULTIFILE
The main question in this PhD thesis is: How can Business Rules Management be configured and valued in organizations? A BRM problem space framework is proposed, existing of service systems, as a solution to the BRM problems. In total 94 vendor documents and approximately 32 hours of semi-structured interviews were analyzed. This analysis revealed nine individual service systems, in casu elicitation, design, verification, validation, deployment, execution, monitor, audit, and version. In the second part of this dissertation, BRM is positioned in relation to BPM (Business Process Management) by means of a literature study. An extension study was conducted: a qualitative study on a list of business rules formulated by a consulting organization based on the Committee of Sponsoring Organizations of the Treadway Commission risk framework. (from the summary of the Thesis p. 165)