Study selection: Randomized controlled trials published after 2007 with (former) healthcare patients ≥ 21 years of age were included if physical activity was measured objectively using a wearable monitor for both feedback and outcome assessment. The main goal of included studies was promoting physical activity. Any concurrent strategies were related only to promoting physical activity. Data extraction: Effect sizes were calculated using a fixed-effects model with standardized mean difference. Information on study characteristics and interventions strategies were extracted from study descriptions. Data synthesis: Fourteen studies met the inclusion criteria (total n = 1,902), and 2 studies were excluded from meta-analysis. The overall effect size was in favour of the intervention groups (0.34, 95% CI 0.23–0.44, p < 0.01). Study characteristics and intervention strategies varied widely. Conclusion: Healthcare interventions using feedback on objectively monitored physical activity have a moderately positive effect on levels of physical activity. Further research is needed to determine which strategies are most effective to promote physical activity in healthcare programmes. Lay Abstract Wearable technology is progressively applied in health care and rehabilitation to provide objective insight into physical activity levels. In addition, feedback on physical activity levels delivered by wearable monitors might be beneficial for optimizing their physical activity. A systematic review and meta-analysis was conducted to evaluate the effectiveness of interventions using feedback on objectively measured physical activity in patient populations. Fourteen studies including 1902 patients were analyzed. Overall, the physical activity levels of the intervention groups receiving objective feedback on physical activity improved, compared to the control groups receiving no objective feedback. Mostly, a variety of other strategies were applied in the interventions next to wearable technology. Together with wearable technology, behavioral change strategies, such as goal-setting and action planning seem to be an important ingredient to promote physical activity in health care and rehabilitation. LinkedIn: https://www.linkedin.com/in/hanneke-braakhuis-b9277947/ https://www.linkedin.com/in/moniqueberger/
MULTIFILE
AbstractObjective: Many older individuals receive rehabilitation in an out-of-hospital setting (OOHS) after acute hospitalization; however, its effect onmobility and unplanned hospital readmission is unclear. Therefore, a systematic review and meta-analysis were conducted on this topic.Data Sources: Medline OVID, Embase OVID, and CINAHL were searched from their inception until February 22, 2018.Study Selection: OOHS (ie, skilled nursing facilities, outpatient clinics, or community-based at home) randomized trials studying the effect ofmultidisciplinary rehabilitation were selected, including those assessing exercise in older patients (mean age 65y) after discharge from hospitalafter an acute illness.Data Extraction: Two reviewers independently selected the studies, performed independent data extraction, and assessed the risk of bias.Outcomes were pooled using fixed- or random-effect models as appropriate. The main outcomes were mobility at and unplanned hospitalreadmission within 3 months of discharge.Data Synthesis: A total of 15 studies (1255 patients) were included in the systematic review and 12 were included in the meta-analysis (7assessing mobility using the 6-minute walk distance [6MWD] test and 7 assessing unplanned hospital readmission). Based on the 6MWD, patientsreceiving rehabilitation walked an average of 23 m more than controls (95% confidence interval [CI]Z: 1.34 to 48.32; I2: 51%). Rehabilitationdid not lower the 3-month risk of unplanned hospital readmission (risk ratio: 0.93; 95% CI: 0.73-1.19; I2: 34%). The risk of bias was present,mainly due to the nonblinded outcome assessment in 3 studies, and 7 studies scored this unclearly.Conclusion: OOHS-based multidisciplinary rehabilitation leads to improved mobility in older patients 3 months after they are discharged fromhospital following an acute illness and is not associated with a lower risk of unplanned hospital readmission within 3 months of discharge.However, the wide 95% CIs indicate that the evidence is not robust.
ObjectiveTo investigate whether duration of knee symptoms influenced the magnitude of the effect of exercise therapy compared to non-exercise control interventions on pain and physical function in people with knee osteoarthritis (OA).MethodWe undertook an individual participant data (IPD) meta-analysis utilising IPD stored within the OA Trial Bank from randomised controlled trials (RCTs) comparing exercise to non-exercise control interventions among people with knee OA. IPD from RCTs were analysed to determine the treatment effect by considering both study-level and individual-level covariates in the multilevel regression model. To estimate the interaction effect (i.e., treatment x duration of symptoms (dichotomised)), on self-reported pain or physical function (standardised to 0–100 scale), a one-stage multilevel regression model was applied.ResultsWe included IPD from 1767 participants with knee OA from 10 RCTs. Significant interaction effects between the study arm and symptom duration (≤1 year vs >1 year, and ≤2 years vs>2 years) were found for short- (∼3 months) (Mean Difference (MD) −3.57, 95%CI −6.76 to −0.38 and −4.12, 95% CI-6.58 to −1.66, respectively) and long-term (∼12 months) pain outcomes (MD −8.33, 95%CI −12.51 to −4.15 and −8.00, 95%CI −11.21 to −4.80, respectively), and long-term function outcomes (MD −5.46, 95%CI −9.22 to −1.70 and −4.56 95%CI −7.33 to-1.80, respectively).ConclusionsThis IPD meta-analysis demonstrated that people with a relatively short symptom duration benefit more from therapeutic exercise than those with a longer symptom duration. Therefore, there seems to be a window of opportunity to target therapeutic exercise in knee OA.