The Dutch research project “Wijs met techniek” (Tech-Wise) explores ethics education from a tool-based, practical perspective. Especially if and how practical tools for ethical deliberation on the impact of technology can be helpful in ethics education for engineering students. The approach is first intended as a variation on theories in ethics and technology. Secondly, the approach uses a focus on the impact of technology as a way toward ethical deliberation. Both characteristics are intended to better appeal to engineering students. In the project we cover three levels of higher education: a University, a University of Applied Sciences and a School for Vocational Training. Together we are developing and testing a suite of activating working methods that can be tailored to various engineering programmes. A first result of this is the simple workshop format “ethics for engineers”, consisting of five steps with four effective ingredients. In this paper we present the general format of this workshop and dive in particular into a specific instance of the workshop called “Wonderberries”. The experiences from the workshop show that with a carefully chosen combination of engaging orientation, a specific ‘technology’ and a concrete design exercise the ethical questions and subsequent deliberation and reflection can be very rich.
MULTIFILE
The scope of technology has expanded towards areas such as sports and vitality, offering significant challenges for engineering designers. However, only little is known about the underlying design and engineering processes used within these fields. Therefore, this paper aims to get an indepth understanding of these type of processes. During a three-day design competition (Hackathon), three groups of engineers were challenged to develop experience-able prototypes in the field of sports and vitality. Their process was monitored based on the Reflective Transformative Design process (RTD-process) framework, describing the various activities part of the design process. Groups had to keep track of their activities, and six group reflection-sessions were held. Results show that all groups used an open and explorative approach, they frequently swapped between activities, making them able to reflect on their actions. While spending more time on envisioning and creating a clear vision seem to relate to the quality of the design concept.
This paper is a case report of why and how CDIO became a shared framework for Community Service Engineering (CSE) education. CSE can be defined as the engineering of products, product-service combinations or services that fulfill well-being and health needs in the social domain, specifically for vulnerable groups in society. The vulnerable groups in society are growing, while fewer people work in health care. Finding technical, interdisciplinary solutions for their unmet needs is the territory of the Community Service Engineer. These unmet needs arise in local niche markets as well as in the global community, which makes it an interesting area for innovation and collaboration in an international setting. Therefore, five universities from Belgium, Portugal, the Netherlands, and Sweden decided to work together as hubs in local innovation networks to create international innovation power. The aim of the project is to develop education on undergraduate, graduate and post-graduate levels. The partners are not aiming at a joined degree or diploma, but offer a shared short track blended course (3EC), which each partner can supplement with their own courses or projects (up to 30EC). The blended curriculum in CSE is based on design thinking principles. Resources are shared and collaboration between students and staff is organized at different levels. CDIO was chosen as the common framework and the syllabus 2.0 was used as a blueprint for the CSE learning goals in each university. CSE projects are characterized by an interdisciplinary, human centered approach leading to inter-faculty collaboration. At the university of Porto, EUR-ACE was already used as the engineering education framework, so a translation table was used to facilitate common development. Even though Thomas More and KU Leuven are no CDIO partner, their choice for design thinking as the leading method in the post-Masters pilot course insured a good fit with the CDIO syllabus. At this point University West is applying for CDIO and they are yet to discover what the adaptation means for their programs and their emerging CSE initiatives. CDIO proved to fit well to in the authentic open innovation network context in which engineering students actively do CSE projects. CDIO became the common language and means to continuously improve the quality of the CSE curriculum.