Uit het vooronderzoekvan het project Duurzamelearning communities: Oogstenin de Greenportblijkt dat12 factorenhierbijvan belangrijk zijn. Deze succesfactoren staan centraal in de interactieve tool Seeds of Innovation. Ook komen uit het vooronderzoek, aangevuld met inzichten uit de literatuur en tips om de samenwerking door te ontwikkelen en meer gebruik te maken van de opbrengsten 12 succesfactoren met toelichting, belangrijkste bevindingen en tips voor ‘hoe nu verder’, Poster, Walk through, De app die learning communities helptde samenwerkingnaareenhogerplan te tillenen innovatieveopbrengstenoptimaalte benutten.
MULTIFILE
Industrial Design Engineering [Open] Innovation (IDE) is a 3-year, English taught, VWO entry-level, undergraduate programme at The Hague University of Applied Sciences (THUAS). The IDE curriculum focuses on the fuzzy front end of (open) innovation, sustainable development, and impact in the implementation phase of product-service design. The work field of Industrial Design Engineering and Open Innovation, like many other domains, is growing increasingly more complex (Bogers, Zobel, Afuah, Almirall, Brunswicker, Dahlander, Frederiksen, Gawer, & Gruber, 2017). Not only have the roles of designers changed considerably in the last decades, they continue to do so at increasing speed. Therefore, industrial design engineering students need different and perhaps more competencies as young professionals in order to deal with this new complexity. Moreover, in our transitional society, lifelong learning takes a central position (Reekers, 2017). Students need to give their learning path direction autonomously, in accordance with their talents and interests. IDE’s Quality & Curriculum Committee (QCC) realized in 2015 there is too much new knowledge to address in a 3-year programme. Instead, IDE students need to learn how to become temporary experts in an array of topics, depending on the characteristics of each new project they do (see Textbox 1). The QCC also concluded that more than just incremental changes to the current curriculum were needed; thus, the idea for a flexible, choice-based semester approach in the curriculum was born: ‘Curriculum M’ (Modular). A co-creational approach was applied, in which teaching staff, students, alumni, prospective students, industry (including the (international) social profit sector), and educational advisors collaborated to develop a curriculum that would allow students to become not just T-shaped (wide basis, one expertise) professionals, but U- or W-shaped professionals, with strong links to other disciplines.
DOCUMENT
At the department of electrical and electronic engineering of Fontys University of Applied Sciences we are defining a real-life learning context for our students, where the crossover with regional healthcare companies and institutes is maximized. Our innovative educational step is based on openly sharing electronic designs for health related measurement modalities as developed by our students. Because we develop relevant reference designs, the cross fertilization with society is large and so the learning cycle is short.
DOCUMENT