Computer security incident response teams (CSIRTs) respond to a computer security incident when the need arises. Failure of these teams can have far-reaching effects for the economy and national security. CSIRTs often have to work on an ad hoc basis, in close cooperation with other teams, and in time constrained environments. It could be argued that under these working conditions CSIRTs would be likely to encounter problems. A needs assessment was done to see to which extent this argument holds true. We constructed an incident response needs model to assist in identifying areas that require improvement. We envisioned a model consisting of four assessment categories: Organization, Team, Individual and Instrumental. Central to this is the idea that both problems and needs can have an organizational, team, individual, or technical origin or a combination of these levels. To gather data we conducted a literature review. This resulted in a comprehensive list of challenges and needs that could hinder or improve, respectively, the performance of CSIRTs. Then, semi-structured in depth interviews were held with team coordinators and team members of five public and private sector Dutch CSIRTs to ground these findings in practice and to identify gaps between current and desired incident handling practices. This paper presents the findings of our needs assessment and ends with a discussion of potential solutions to problems with performance in incident response. https://doi.org/10.3389/fpsyg.2017.02179 LinkedIn: https://www.linkedin.com/in/rickvanderkleij1/
MULTIFILE
This essay explores the notion of resilience by providing a theoretical context and subsequently linking it to the management of safety and security. The distinct worlds of international security, industrial safety and public security have distinct risks as well as distinct ‘core purposes and integrities’ as understood by resilience scholars. In dealing with risks one could argue there are three broad approaches: cost-benefit analysis, precaution and resilience. In order to distinguish the more recent approach of resilience, the idea of adaptation will be contrasted to mitigation. First, a general outline is provided of what resilience implies as a way to survive and thrive in the face of adversity. After that, a translation of resilience for the management of safety and security is described. LinkedIn: https://www.linkedin.com/in/juul-gooren-phd-cpp-a1180622/
Currently, promising new tools are under development that will enable crime scene investigators to analyze fingerprints or DNA-traces at the crime scene. While these technologies could help to find a perpetrator early in the investigation, they may also strengthen confirmation bias when an incorrect scenario directs the investigation this early. In this study, 40 experienced Crime scene investigators (CSIs) investigated a mock crime scene to study the influence of rapid identification technologies on the investigation. This initial study shows that receiving identification information during the investigation results in more accurate scenarios. CSIs in general are not as much reconstructing the event that took place, but rather have a “who done it routine.” Their focus is on finding perpetrator traces with the risk of missing important information at the start of the investigation. Furthermore, identification information was mostly integrated in their final scenarios when the results of the analysis matched their expectations. CSIs have the tendency to look for confirmation, but the technology has no influence on this tendency. CSIs should be made aware of the risks of this strategy as important offender information could be missed or innocent people could be wrongfully accused.
Despite the benefits of the widespread deployment of diverse Internet-enabled devices such as IP cameras and smart home appliances - the so-called Internet of Things (IoT) has amplified the attack surface that is being leveraged by cyber criminals. While manufacturers and vendors keep deploying new products, infected devices can be counted in the millions and spreading at an alarming rate all over consumer and business networks. The objective of this project is twofold: (i) to explain the causes behind these infections and the inherent insecurity of the IoT paradigm by exploring innovative data analytics as applied to raw cyber security data; and (ii) to promote effective remediation mechanisms that mitigate the threat of the currently vulnerable and infected IoT devices. By performing large-scale passive and active measurements, this project will allow the characterization and attribution of compromise IoT devices. Understanding the type of devices that are getting compromised and the reasons behind the attacker’s intention is essential to design effective countermeasures. This project will build on the state of the art in information theoretic data mining (e.g., using the minimum description length and maximum entropy principles), statistical pattern mining, and interactive data exploration and analytics to create a casual model that allows explaining the attacker’s tactics and techniques. The project will research formal correlation methods rooted in stochastic data assemblies between IoT-relevant measurements and IoT malware binaries as captured by an IoT-specific honeypot to aid in the attribution and thus the remediation objective. Research outcomes of this project will benefit society in addressing important IoT security problems before manufacturers saturate the market with ostensibly useful and innovative gadgets that lack sufficient security features, thus being vulnerable to attacks and malware infestations, which can turn them into rogue agents. However, the insights gained will not be limited to the attacker behavior and attribution, but also to the remediation of the infected devices. Based on a casual model and output of the correlation analyses, this project will follow an innovative approach to understand the remediation impact of malware notifications by conducting a longitudinal quasi-experimental analysis. The quasi-experimental analyses will examine remediation rates of infected/vulnerable IoT devices in order to make better inferences about the impact of the characteristics of the notification and infected user’s reaction. The research will provide new perspectives, information, insights, and approaches to vulnerability and malware notifications that differ from the previous reliance on models calibrated with cross-sectional analysis. This project will enable more robust use of longitudinal estimates based on documented remediation change. Project results and methods will enhance the capacity of Internet intermediaries (e.g., ISPs and hosting providers) to better handle abuse/vulnerability reporting which in turn will serve as a preemptive countermeasure. The data and methods will allow to investigate the behavior of infected individuals and firms at a microscopic scale and reveal the causal relations among infections, human factor and remediation.