Traditionally, the construction industry in New Zealand and in other countries has seen a low productivity and a low track record for successful innovations (Fairweather, 2010). The industry also lags in sustainability (e.g. Nemry, 2008) when seen from a broader or lifecycle perspective. This has a negative impact on private and government spending, on quality and health/wellbeing, and on the environment.This paper posits that the construction industry needs non-incremental (disruptive or discontinuous, i.e. modular, architectural, system or radical) sustainable technology innovations to make drastic improvements in sustainability. Such innovations are often procured (acquired) and (co-) developed by small entrepreneurial firms thus introducing such innovations into the construction and building industry. However it is unclear exactly how entrepreneurial small firms procure non-incremental sustainable technology innovations.
LINK
Traditionally construction industries in New Zealand and abroad have a low track record for successful sustainable innovations. This has a negative impact on private and government spending, and on quality, society and the environment. This conceptual paper posits that the construction industry needs non-incremental (i.e. architectural, system, radical, modular) sustainable technology innovations to make drastic improvements. Such innovations often come from entrepreneurial (small) firms from other industries or at the beginning of supply chains and must be procured and adopted further into such chains. However, after an extensive literature review it remains unclear how entrepreneurial firms procure non-incremental sustainable technology innovations for the construction industry. The paper focuses on procurement activities of entrepreneurial firms in the New Zealand context. These activities interact with (internal and external) innovation activities for an optimal firm performance. They are affected by clusters of internal and external variables.The paper discusses extant literature, a conceptual framework, main propositions, research aims and the choice for a focus group method. It is part of a doctoral project.Paper, presented at ACERE 2015 in Adelaide Australia.
In recent years, a step change has been seen in the rate of adoption of Industry 4.0 technologies by manufacturers and industrial organizations alike. This article discusses the current state of the art in the adoption of Industry 4.0 technologies within the construction industry. Increasing complexity in onsite construction projects coupled with the need for higher productivity is leading to increased interest in the potential use of Industry 4.0 technologies. This article discusses the relevance of the following key Industry 4.0 technologies to construction: data analytics and artificial intelligence, robotics and automation, building information management, sensors and wearables, digital twin, and industrial connectivity. Industrial connectivity is a key aspect as it ensures that all Industry 4.0 technologies are interconnected allowing the full benefits to be realized. This article also presents a research agenda for the adoption of Industry 4.0 technologies within the construction sector, a three-phase use of intelligent assets from the point of manufacture up to after build, and a four-staged R&D process for the implementation of smart wearables in a digital enhanced construction site.
Mattresses for the healthcare sector are designed for robust use with a core foam layer and a polyurethane-coated polyester textile cover. Nurses and surgeons indicate that these mattresses are highly uncomfortable to patients because of poor microclimatic management (air, moisture, temperature, friction, pressure regulation, etc) across the mattress, which can cause pressure ulcers (in less than a day). The problem is severe (e.g., extra recovery time, medication, increased risk, and costs) for patients with wounds, infection, pressure-sensitive decubitus. There are around 180,000 waterproof mattresses in the healthcare sector in the Netherlands, of which yearly 40,000 mattresses are discarded. Owing to the rapidly aging population it is expected to increase the demand for these functional mattresses from 180,000 to 400,000 in the next 10 years in the healthcare sector. To achieve a circular economy, Dutch Government aims for a 50% reduction in the use of primary raw materials by 2030. As of January 1, 2022, mattress manufacturers and importers are obliged to pay a waste management contribution. Within the scope of this project, we will design, develop, and test a circular & functional mattress for the healthcare (cure & care) sector. The team of experts from knowledge institutes, SMEs, hospital(s), branch-organization joins hands to design and develop a functional (microclimate management, including ease of use for nurses and patients) mattress that deals with uncomfortable sleeping and addresses the issue of pressure ulcers thereby overall accelerating the healing process. Such development addresses the core issue of circularity. The systematic research with proper demand articulation leads to V-shape verification and validation research methodology. With design focus and applied R&D at TRL-level (4-6) is expected to deliver the validated prototype(s) offering SMEs an opportunity to innovate and expand their market. The knowledge will be used for dissemination and education at Saxion.