The biomass demand for the use as both renewable energy source and raw material for the biotechnology industry is increasing. Simultaneously, the supply of biomass is requested to become more costcompetitive. Innovative solutions for cost-effective biomass production should also avoid indirect land use changes and direct negative environmental effects. The main aim of this study is to identify the most promising innovative lignocellulosic cropping systems regarding environmental sustainability as well as social acceptance for different cost scenarios and different regions in Europe. To gather innovative cropping knowledge from around Europe ADVANCEFUEL organized a workshop. Participating Horizon 2020 projects presenting innovative approaches onlignocellulosic cropping systems included: FORBIO, MAGIC, BECOOL, LIBBIO, GRACE, and SEEMLA. Data was collected from field studies of the participating projects prior to the workshop and later presented in an aggregated way as a basis for discussions. This approach incorporates the knowledge gained in over 60 study cases conducted in 12 different countries. Under these study cases, 16 different lignocellulosic crops were covered. This field based knowledge can be used to validate spatial assessments of sustainable biomass production potentials in Europe.
DOCUMENT
A description of our experiences with a model for education in innovative, interdisciplinary and international engineering. (Students from different (technical) disciplines in Higher Education are placed in industry for a period of eighteen months after completing two-and-a-half year of theoretical studies). They work in multi-disciplinary projects on different themes, in order to grow to fully equal employees in industry. Besides students, teachers and company employees participate in the projects. The involvement of other level students, both from University and from Vocational Education, is recommended. The experiments in practice give confidence in the succesful implementation of this model.
DOCUMENT
Innovative development is a program that is given at The Hague University of Applied Sciences. This program teaches students to become more innovative. This article will look into the current approach and measure the growth in innovativeness of the students over the years. This was measured with a survey, based on the Berkeley innovation index. The results from the survey were calculated and scored based on eight factors. The innovative development program was compared with another program called information security management. These programs are from the same faculty. The information security management program did not show significant growth over the years in innovation. The innovative development program had resulted in a significant growth in innovativeness over the years. Some of the factors could be improved to increase the effectiveness of the innovative development program. https://nl.linkedin.com/in/haniers
MULTIFILE
Nowadays companies need higher educated engineers to develop their competences to enable them to innovate. This innovation competence is seen as a remedy for the minor profitable business they do during the financial crises. Innovation is an element to be developed on the one hand for big companies as well as for small-and-medium sized companies through Europe to overcome this crisis. The higher education can be seen as an institution where youngsters, coming from secondary schools, who choose to learn at higher education to realize their dream, what they like to become in the professional world. The tasks of the Universities of applied Sciences are to prepare these youngsters to become starting engineers doing their job well in the companies. Companies work for a market, trying to manufacture products which customers are willing to pay for. They ask competent employees helping achieving this goal. It is important these companies inform the Universities of applied Sciences in order to modify their educational program in such a way that the graduated engineers are learning the latest knowledge and techniques, which they need to know doing their job well. The Universities of applied Sciences of Oulu (Finland) and Fontys Eindhoven (The Netherlands) are working together to experience possibilities to qualify their students on innovation development in an international setting. In the so-called: ‘Invention Project’, students are motivated to find their own invention, to design it, to prepare this idea for prototyping and to really manufacture it. Organizing the project, special attention is given to communication protocol between students and also between teachers. Students have meetings on Thursday every week through Internet connection with the communication program OPTIMA, which is provided by the Oulu University. Not only the time difference between Finland and the Netherlands is an issue to be organized also effective protocols how to provide each other relevant information and also how to make in an effective way decisions are issues. In the paper the writers will present opinions of students, teachers and also companies in both regions of Oulu and Eindhoven on the effectiveness of this project reaching the goal students get more experienced to set up innovative projects in an international setting. The writers think this is an important and needed competence for nowadays young engineers to be able to create lucrative inventions for companies where they are going to work for. In the paper the writers also present the experiences of the supervising conditions during the project. The information found will lead to success-factors and do’s and don’ts for future projects with international collaboration.
DOCUMENT
The European music profession is rapidly changing and suggests more flexible career patterns and a need for transferable skills and lifelong learning strategies. Musicians collaborate increasingly with practitioners in other arts and societal cross-sector settings. This reality holds challenges and implications for higher music education (Smilde 2009). This state of play was point of departure in 2006 for the development of the collaborative European master ‘New Audiences and Innovative Practice’ (NAIP) by five European conservatoires. Five schools, from Iceland, the UK, the Netherlands and Finland, devised an innovative two-year master programme, helping students to develop and lead creative projects in diverse artistic, community and cross-sectoral settings, thereby creating new audiences and developing their leadership skills in varied artistic and social contexts. The programme aims to provide future professional musicians with the skills and knowledge to become artistically flexible practitioners able to adjust to new contexts within a wide range of situations of societal relevance. This particular chapter entails a case study of the first summer school of this programme which took place in Iceland. It details the heart of the programme, the artistic laboratory and reflective practice.
DOCUMENT
In the last two decades, co-creation and social innovation have become important concepts in academic research and public policy. The two concepts are conceptually linked, but this relationship has hardly been problematized in academic literature. In addition, social innovation and especially co-creation are not defined in EU policies, but merely included because they support policy aims. The lack of problematization and definition not only hampers progress in the academic field, but is also constringing co-creation into an exercise of merely including stakeholders therefore neglecting the full potential of co-creation. The key question addressed in this article is therefore: how can we evaluate the application of co-creation in EU-funded social innovation projects? A literature review revealed that co-creation and social innovation have become connected only very recently in academic literature. In this publication, we analyse the meta narratives of this emerging body of literature and conclude that we can distinguish three distinct segments with their own characteristics. We used these insights to develop an adaptive evaluation framework. This framework can be used to assess the application of co-creation within social innovation in, for example, EU-funded projects. This could push the emerging academic field forward and open up new research themes and designs. We also suggest that the framework could specifically support policymakers in their efforts to evaluate processes of co-creation instead of focusing on the dominant impact evaluations.
DOCUMENT
An investigation in the learning effects of integrated development projects. In two subsequent semesters the students were asked how they rated their competencies at the start of the project as well as at the end of it. The students voluntarily filled out a questionnaire. After the last questionnaire a number of students were also interviewed in order to learn more about their perceptions. It was a remarkable outcome of these interviews that a lot of students tended to give themselves lower ratings in the end if they met any difficulties in for instance communication or co-operation during the project. Then the questionnaire showed a decrease in the student's ratings, while anyone else would say the student did learn something after recognizing these difficulties. It required a different interpretation of the outcomes of the questionnaires. The investigation showed that co-operating in general and in multidisciplinary teams in particular, co-operating with companies and also working according to plans are the four objectives that are recognized mostly by the students. The factors that actually contribute to, or block, the learning effects remained unknown yet.
DOCUMENT
An interview with HU researcher Beverly Pasian on smart cities, projects and urban life.
LINK
This paper explores innovative approaches to stimulating the uptake of existing climate technologies for mitigation and adaptation. Such innovations can be identified in the following areas: how technology options are selected by countries (i.e. as part of low-emission and climate-resilient pathways); how stakeholder views and practitioner knowledge, as well as their preferences, are solicited in climate technology planning; what financial innovations exist for enhancing funding of technology projects and programmes; and what are viable ways of enhancing private sector engagement and incubators.
LINK
Within health education, many innovations are introduced, but are often not successful or sustainable. It is generally acknowledged that the quality of an educational system mainly depends on the quality of the teachers. Innovations will only succeed if teachers experience a climate that stimulates innovation and if they possess a sufficient level of innovative work behaviour. The current concept of innovative work behaviour (IWB) consists of three different behavioural dimensions: Idea generation, promotion and realization. However, the concept lacks attention for idea sustainability, which is necessary to embed the innovation deeply in daily practice. The limited attention for improving and continuation of an implemented idea is an often-mentioned explanation for the lack of the long-term success of innovations. Aim: This study aims at the development and validation of an instrument for innovative work behaviour that also includes the dimension idea sustainability, which has been overlooked by other researchers. Method: A questionnaire is developed, based on the questionnaire of Messmann (2012). Additional items are added to measure the new dimension idea sustainability. This new dimension contains the following concepts: Improving and optimising the innovation, disseminating the innovation in depth in the system of the organization and disseminating on a larger scale, and finally visualization of the benefits for stakeholders. The questionnaire is send to 400 teachers of a University for applied sciences in the South of The Netherlands. Results: 179 questionnaires were completed. It can be concluded that the scales to measure innovative work behaviour are strongly interrelated. There are significant correlations between the original dimensions and the added dimensions. The results for individual characteristics indicated that age and tenure did not correlate with any of the scales. Work experience, gender and also the faculty to which teachers belong did make some difference with regard to IWB. The results for job characteristics showed that the number of working hours, job position and the participation in research groups did make a difference with regard to IWB. In general, job characteristics showed more links with the various scales to measure innovative work behavior compared to the individual characteristics.
DOCUMENT