Business model innovations emerge over time and are influenced by managerial interaction with stakeholders. Especially with regard to business model innovation for sustainability, manager-stakeholder interaction can radically change a company’s business model and underlying logic. However, the majority of the literature shows how manager–stakeholder interaction may limit business model innovation when stakeholders reinforce existing managerial cognitions. In this chapter we study how stakeholders can also stimulate business model innovation by affecting managerial cognitive change. Through three case studies, we find that this can occur through three shaping processes: market approach shaping, product/service offering shaping, and credibility shaping. We also find that the impact of new or latent stakeholders is greater than that of existing stakeholders. We end the chapter by sketching a research agenda to further unravel the role of stakeholders affecting managerial cognition around business model innovation for sustainability.
Previous investigations of consumer subcultures in the CCT tradition focused primarily on consumer behaviours, feelings, experiences and meanings of consumption. This paper advocates that in order to deeply understand and interpret a particular subculture, researchers in consumer culture should consider more thoroughly the interaction between consumers and producers in consumption markets. This argument is illustrated with a research project on lifestyle sports. From the results of this study it appears that producers play a vital and interdependent role in meaning and interpretation processes. It is argued that processes in which consumers give meaning to activities can not be isolated from the processes in which producers ascribe meanings to activities, settings and markets. In this 'circuit of culture', production and consumption are not completely separate spheres of existence but rather are mutually constitutive of one another (Du Gay, Hall, Janes, Mackay, & Negus, 1997).
This article aims to uncover the processes of developing sustainable business models in innovation ecosystems. Innovation ecosystems with sustainability goals often consist of cross-sector partners and need to manage three tensions: the tension of value creation versus value capture, the tension of mutual value versus individual value, and the tension of gaining value versus losing value. The fact that these tensions affect all actors differently makes the process of developing a sustainable business model challenging. Based on a study of four sustainably innovative cross-sector collaborations, we propose that innovation ecosystems that develop a sustainable business model engage in a process of valuing value in which they search for a result that satisfies all actors. We find two different patterns of valuing value: collective orchestration and continuous search. We describe these patterns and the conditions that give rise to them. The identification of the two patterns opens up a research agenda that can shed further light on the conditions that need to be in place in order for an innovation ecosystem to develop effective sustainable business models. For practice, our findings show how cross-sector actors in innovation ecosystems may collaborate when developing a business model around emerging sustainability-oriented innovations.
Manual labour is an important cornerstone in manufacturing and considering human factors and ergonomics is a crucial field of action from both social and economic perspective. Diverse approaches are available in research and practice, ranging from guidelines, ergonomic assessment sheets over to digitally supported workplace design or hardware oriented support technologies like exoskeletons. However, in the end those technologies, methods and tools put the working task in focus and just aim to make manufacturing “less bad” with reducing ergonomic loads as much as possible. The proposed project “Human Centered Smart Factories: design for wellbeing for future manufacturing” wants to overcome this conventional paradigm and considers a more proactive and future oriented perspective. The underlying vision of the project is a workplace design for wellbeing that makes labor intensive manufacturing not just less bad but aims to provide positive contributions to physiological and mental health of workers. This shall be achieved through a human centered technology approach and utilizing advanced opportunities of smart industry technologies and methods within a cyber physical system setup. Finally, the goal is to develop smart, shape-changing workstations that self-adapt to the unique and personal, physical and cognitive needs of a worker. The workstations are responsive, they interact in real time, and promote dynamic activities and varying physical exertion through understanding the context of work. Consequently, the project follows a clear interdisciplinary approach and brings together disciplines like production engineering, human interaction design, creative design techniques and social impact assessment. Developments take place in an industrial scale test bed at the University of Twente but also within an industrial manufacturing factory. Through the human centered design of adaptive workplaces, the project contributes to a more inclusive and healthier society. This has also positive effects from both national (e.g. relieve of health system) as well as individual company perspective (e.g. less costs due to worker illness, higher motivation and productivity). Even more, the proposal offers new business opportunities through selling products and/or services related to the developed approach. To tap those potentials, an appropriate utilization of the results is a key concern . The involved manufacturing company van Raam will be the prototypical implementation partner and serve as critical proof of concept partner. Given their openness, connections and broad range of processes they are also an ideal role model for further manufacturing companies. ErgoS and Ergo Design are involved as methodological/technological partners that deal with industrial engineering and ergonomic design of workplace on a daily base. Thus, they are crucial to critically reflect wider applicability and innovativeness of the developed solutions. Both companies also serve as multiplicator while utilizing promising technologies and methods in their work. Universities and universities of applied sciences utilize results through scientific publications and as base for further research. They also ensure the transfer to education as an important leverage to inspire and train future engineers towards wellbeing design of workplaces.
The presented research project will address parasocial interaction (PSI) directed towards non-player characters (NPCs) within video games. As first described by Horton and Wohl in 1956, the investigation of PSI has been predominantly limited to the context of linear media. Consequently, a significant research gap has emerged, prompting the need for this study. This research endeavors to bridge this gap by conducting multiple studies that delve into different aspects of a character's presence that seem to affect PSI. For example, factors such as obtrusiveness and persistence will be investigated due to their potential influence on the strength of PSI (Hartmann, Schramm, & Klimmt, 2004). Furthermore, the inquiry extends to exploring the collective impact of a group of NPCs on PSI dynamics. To achieve these objectives, the research will employ research through design methods, involving iterative modifications to the NPCs across various test setups. A game-based research environment will be created for participant exposure, leveraging the video game RimWorld (Ludeon Studios, 2018) as a foundational framework that can be adapted as necessary. Employing a quantitative approach, the studies will document the impact different aspects of a character’s presence have on the strength of PSI observed. The outcomes of this research endeavor will be disseminated among fellow game developers through artistic interventions, such as, for example, game jams. This approach seeks to not only contribute to the scholarly understanding of PSI but also offer practical insights in the context of game development.
The PhD research by Joris Weijdom studies the impact of collective embodied design techniques in collaborative mixed-reality environments (CMRE) in art- and engineering design practice and education. He aims to stimulate invention and innovation from an early stage of the collective design process.Joris combines theory and practice from the performing arts, human-computer interaction, and engineering to develop CMRE configurations, strategies for its creative implementation, and an embodied immersive learning pedagogy for students and professionals.This lecture was given at the Transmedia Arts seminar of the Mahindra Humanities Center of Harvard University. In this lecture, Joris Weijdom discusses critical concepts, such as embodiment, presence, and immersion, that concern mixed-reality design in the performing arts. He introduces examples from his practice and interdisciplinary projects of other artists.About the researchMultiple research areas now support the idea that embodiment is an underpinning of cognition, suggesting new discovery and learning approaches through full-body engagement with the virtual environment. Furthermore, improvisation and immediate reflection on the experience itself, common creative strategies in artist training and practice, are central when inventing something new. In this research, a new embodied design method, entitled Performative prototyping, has been developed to enable interdisciplinary collective design processes in CMRE’s and offers a vocabulary of multiple perspectives to reflect on its outcomes.Studies also find that engineering education values creativity in design processes, but often disregards the potential of full-body improvisation in generating and refining ideas. Conversely, artists lack the technical know-how to utilize mixed-reality technologies in their design process. This know-how from multiple disciplines is thus combined and explored in this research, connecting concepts and discourse from human-computer interaction and media- and performance studies.This research is a collaboration of the University of Twente, Utrecht University, and HKU University of the Arts Utrecht. This research is partly financed by the Dutch Research Council (NWO).Mixed-reality experiences merge real and virtual environments in which physical and digital spaces, objects, and actors co-exist and interact in real-time. Collaborative Mix-Reality Environments, or CMRE's, enable creative design- and learning processes through full-body interaction with spatial manifestations of mediated ideas and concepts, as live-puppeteered or automated real-time computer-generated content. It employs large-scale projection mapping techniques, motion-capture, augmented- and virtual reality technologies, and networked real-time 3D environments in various inter-connected configurations.This keynote was given at the IETM Plenary meeting in Amsterdam for more than 500 theatre and performing arts professionals. It addresses the following questions in a roller coaster ride of thought-provoking ideas and examples from the world of technology, media, and theatre:What do current developments like Mixed Reality, Transmedia, and The Internet of Things mean for telling stories and creating theatrical experiences? How do we design performances on multiple "stages" and relate to our audiences when they become co-creators?Contactjoris.weijdom@hku.nl / LinkedIn profileThis research is part of the professorship Performative Processes