BACKGROUND: Increasing evidence indicates the potential benefits of restricted fluid management in critically ill patients. Evidence lacks on the optimal fluid management strategy for invasively ventilated COVID-19 patients. We hypothesized that the cumulative fluid balance would affect the successful liberation of invasive ventilation in COVID-19 patients with acute respiratory distress syndrome (ARDS).METHODS: We analyzed data from the multicenter observational 'PRactice of VENTilation in COVID-19 patients' study. Patients with confirmed COVID-19 and ARDS who required invasive ventilation during the first 3 months of the international outbreak (March 1, 2020, to June 2020) across 22 hospitals in the Netherlands were included. The primary outcome was successful liberation of invasive ventilation, modeled as a function of day 3 cumulative fluid balance using Cox proportional hazards models, using the crude and the adjusted association. Sensitivity analyses without missing data and modeling ARDS severity were performed.RESULTS: Among 650 patients, three groups were identified. Patients in the higher, intermediate, and lower groups had a median cumulative fluid balance of 1.98 L (1.27-7.72 L), 0.78 L (0.26-1.27 L), and - 0.35 L (- 6.52-0.26 L), respectively. Higher day 3 cumulative fluid balance was significantly associated with a lower probability of successful ventilation liberation (adjusted hazard ratio 0.86, 95% CI 0.77-0.95, P = 0.0047). Sensitivity analyses showed similar results.CONCLUSIONS: In a cohort of invasively ventilated patients with COVID-19 and ARDS, a higher cumulative fluid balance was associated with a longer ventilation duration, indicating that restricted fluid management in these patients may be beneficial. Trial registration Clinicaltrials.gov ( NCT04346342 ); Date of registration: April 15, 2020.
Background: Airway care interventions and prone positioning are used in critically ill patients with coronavirus disease 2019 (COVID-19) admitted to the intensive care unit (ICU) to improve oxygenation and facilitate mucus removal. At the onset of the COVID-19 pandemic, the decision-making process regarding the practice of airway care interventions and prone positioning was challenging. Objective: To provide an overview of the practice of airway care interventions and prone positioning during the second wave of the pandemic in the Netherlands. Method: Web-based survey design. Seventy ICU nurses, each representing one intensive care in the Netherlands, were contacted for participation. Potential items were generated based on a literature search and formulated by a multidisciplinary team. Questions were pilot tested for face and construct validity by four intensive care nurses from four different hospitals. Results: The response rate was 53/77 (69%). This survey revealed widespread use of airway care interventions in the Netherlands in COVID-19 patients, despite questionable benefits. Additionally, prone positioning was used in invasively and non-invasively ventilated patients. Conclusions: The use of airway care interventions and prone positioning is time consuming and comes with the production of waste. Further research is needed to assess the effectiveness, workload, and environmental impact of airway care interventions and prone positioning.
We describe the incidence and practice of prone positioning and determined the association of use of prone positioning with outcomes in invasively ventilated patients with acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19) in a national, multicenter observational study, performed at 22 intensive care units in the Netherlands. Patients were categorized into 4 groups, based on indication for and actual use of prone positioning. The primary outcome was 28-day mortality. Secondary endpoints were 90-day mortality, and ICU and hospital length of stay. In 734 patients, prone positioning was indicated in 60%—the incidence of prone positioning was higher in patients with an indication than in patients without an indication for prone positioning (77 vs. 48%, p = 0.001). Patients were left in the prone position for median 15.0 (10.5–21.0) hours per full calendar day—the duration was longer in patients with an indication than in patients without an indication for prone positioning (16.0 (11.0–23.0) vs. 14.0 (10.0–19.0) hours, p < 0.001). Ventilator settings and ventilation parameters were not different between the four groups, except for FiO2 which was higher in patients having an indication for and actually receiving prone positioning. Our data showed no difference in mortality at day 28 between the 4 groups (HR no indication, no prone vs. no indication, prone vs. indication, no prone vs. indication, prone: 1.05 (0.76–1.45) vs. 0.88 (0.62–1.26) vs. 1.15 (0.80–1.54) vs. 0.96 (0.73–1.26) (p = 0.08)). Factors associated with the use of prone positioning were ARDS severity and FiO2. The findings of this study are that prone positioning is often used in COVID-19 patients, even in patients that have no indication for this intervention. Sessions of prone positioning lasted long. Use of prone positioning may affect outcomes.