During the persuasive technology symposium, Marije Deutekom - Baart de la Faille and colleagues organised a symposium session with 4 presentations: • Presentation 1: A home based exercise program: are older adults able to use mHealth technology? (Sumit Mehra). • Presentation 2: Promoting healthy diet and physical activity in children through the use of games: bridging the gap between industry and science (Monique Simons). • Presentation 3: Increased motivation for exercise through exercise apps such as BAMBEA (Joey van der Bie & Nicky Nibbeling) • Presentation 4: Which factors are important for effectiveness of sport- and health-related apps? Results of focus groups with experts (Joan Dallinga).
DOCUMENT
The COVID-19 pandemic has changed many aspects of people’s lives, and seems to have affected people’s wellbeing and relation to technology now, and in the future. Not only has it changed people’s lives and the way citizens live, work, exercise, craft and stay connected, the pandemic has also altered the way Human Computer Interaction (HCI) professionals can engage in face-to-face interactions and consequently participatory, human-centered design and research. Limitations in being close to others and having physical, visible and shared interactions pose a challenge as these aspects are typically considered critical for the accomplishment of a transparent, attractive and critical understanding of technology and respective civic and digital engagement for wellbeing. Consequently, the risk now observed is that citizens in the new ‘normal’ digital society, particularly vulnerable groups, are beingeven less connected, supported or heard. Drawing from a study with an expert panel of 20 selected HCI related professionals in The Netherlands that participated on-line (through focus groups, questionnaires and/or interviews) discussing co-creation for wellbeing in times of COVID-19 (N=20), and civic values for conditional data sharing (N=11), this paper presents issues encountered and potential new approaches to overcome participatory challenges in the ‘new’ digital society. This study further draws on project reporting and a ‘one week in the life of’ study in times of COVID-19 with a physical toolkit for remote data collection that was used with older adults (65+, N=13) and evaluated with professionals (N=6). Drawing on such projects and professional experiences, the paper discusses some opportunities of participatory approaches for the new ‘distant’ normal.
DOCUMENT
Travelling independently in an urban environment is challenging for people with a visual impairment (PVI). Current Wayfinding-apps lack detailed environmental information and are often not fully accessible. With the aim to design a wayfinding solution that facilitates independent travel and incorporates PVI needs and wishes, we deployed a cocreation design approach with PVI and professionals as co-creators. Our combination of different co-creation techniques and iterative prototyping expands the related research on wayfinding solutions and allowed us to zoom-in on specific features. Our approach started with a userrequirements analysis through selfexperience sessions, observations and focus groups. This was followed by iterative prototyping with user evaluations in controlled indoor and outdoor environments. Over a period of two years we created an accessible wayfinding solution in co-creation with 31 PVI and 19 professionals. This resulted in an optimized accessible interface, a personalized route, personalized wayfinding instructions and detailed orientation and environmental information. Lessons learned for co- design with PVI included setting up an accessible workshop environment, applying diverse evaluation methods and involving reoccurring participants.
DOCUMENT
This paper explores a method for deducing the affective state of runners using his/her movements. The movements are measured on the arm using a smartphone’s built-in accelerometer. Multiple features are derived from the measured data. We studied which features are most predictive for the affective state by looking at the correlations between the features and the reported affect. We found that changes in runners’ movement can be used to predict change in affective state.
DOCUMENT
Background: Construction work, squares, busy sidewalks, road crossings and hasty cyclists - these are just a few of the many challenges visually impaired people (VI) encounter when navigating through urban environments. Especially unknown routes require so much concentration and energy, that VI often choose to stay at home or to travel with assistance. The EyeBeacons project investigates how a wayfinding smartphone app for VI can support independent travel.Methods: Two clickable prototypes of a wayfinding app for VI were created based on the user-requirements from a pilot study. The first app contained many personalization options for route planning, while the second app used pre-defined user profiles (wizard) to create personal routes. Both apps were evaluated in a co-creation workshop of 16 participants, consisting of VI (6), VI care professionals (5) and UX/ICT experts (5). During the workshop, several UX design tools (e.g., customer journey maps) were used to evaluate the apps.Findings: Our preliminary results show that both apps were considered to have additional value for VI’s current route planning and wayfinding practices. Surprisingly, the first app, which offered many personalization options but consequently included more interaction steps, was preferred over the optimized wizard design of the second app. The main reason for this choice, was the limited insight on the reasoning behind route selection. Key features that participants missed in both prototype apps included for example, a function to repeat navigation cues on request.Discussion: This study provides valuable new insights for the design of wayfinding apps that allow VI to navigate safely and independently through challenging urban environments. Furthermore, we found that co-creation works well with the target group using common UX design methods as long as some extra facilitation is provided to the VI. By using clickable prototypes, both VI and professionals were able to experience and evaluate the design prototypes.
DOCUMENT
Methode : Op basis van gedragsveranderingstheoriëen is een smartphone app ontwikkeld. De app motiveert de gebruiker om te bewegen (wandelen, hardlopen) door het ondersteunen bij het stellen van doelen [1], het aanbieden van locatie specifieke instructionele-(beweeginstructies in video) en motivationele-feedback (motivatie berichten) [2] en het gezond belonen van inzet [3]. De app is getest in ons living lab: het Oosterpark in Amsterdam. Het park is uitgerust met Bluetooth beacons (zendertjes die elke seconde een signaal versturen) waarmee de app de locatie van de gebruiker bepaalt. Tien gemiddeldactieve gebruikers hebben gedurende tien weken deelgenomen. Na afloop zijn interviews afgenomen om inzicht te verkrijgen in de werkzame elementen van de app en nieuwe behoeften betreffende beweeg apps te inventariseren.Resultaten : Naar aanleiding van de interviews worden verbeterpunten aan op design, functionaliteiten en terminologie doorgevoerd. We verwachten dat dit leidt tot afname van de waargenomen problemen en een toegenomen tevredenheid bij de gebruikers.Discussie en conclusie : Deze studie laat het belang zien van het testen op gebruiksvriendelijkheid van een app die motiveert tot bewegen in een living lab. We verwachten dat de studie resulteert in een app met een hogere gebruiksvriendelijkheid met als gevolg een toename in het gebruik van de app en het beweeggedrag van de deelnemers.Make it count : De positieve effecten van bewegen zijn bekend en toch voldoen veel mensen niet aan de richtlijnen voor gezond bewegen. Het gebruik van de BAMBEA app met zijn locatie specifieke feedback (dmv beacons), theoretische basis en focus op de beginnende sporter biedt perspectieven voor stimulering van het beweeggedrag van deze groep.
DOCUMENT
Het belang van sport en bewegen voor een gezond en vitaal Nederland is overduidelijk voor de ‘believers’ in de kracht van sport. De sport heeft echter moeite om deze kracht daadwerkelijk aan te tonen in het politieke en publieke debat. Daarnaast zijn er nog veel (groepen van) burgers die niet of te weinig bewegen en een inactief leven leiden.
DOCUMENT
Urban environments are full of noise and obstacles, and therefore potentially dangerous and difficult to navigate for the visually impaired. Using Bluetooth beacons and a smartphone app we guide them through these environments by providing the information needed for that specific location. We present the preliminary results concerning the usability of our approach.
DOCUMENT
Introduction: Visually impaired people experience trouble with navigation and orientation due to their weakened ability to rely on eyesight to monitor the environment [1][2]. Smartphones such as the iPhone are already popular devices among the visually impaired for navigating [3]. We explored if an iPhone application that responds to Bluetooth beacons to inform the user about their environment could aid the visually impaired in navigation in an urban environment.Method: We tested the implementation in an urban environment with visually impaired people using the route from the Amsterdam Bijlmer train station to the Royal Dutch Visio office. Bluetooth beacons were attached at two meters high to lampposts and traffic signs along a specified route to give the user instructions via a custom made iPhone app. Three different obstacle types were identified and implemented in the app: a crossover with traffic signs, a car parking entrance and objects blocking the pathway like stairs. Based on the work of Atkin et al.[5] and Havik et al. [6] at each obstacle the beacon will trigger the app to present important information about the surroundings like potential hazards nearby, how to navigate around or through obstacles and information about the next obstacle. The information is presented using pictures of the environment and instructions in text and voice based on Giudice et al. [4]. The application uses Apple’s accessibility features to communicate the instructions with VoiceOver screenreader. The app allows the user to preview the route, to prepare for upcoming obstacles and landmarks. Last, users can customize the app by specifying the amount of detail in images and information the app presents.To determine if the app is more useful for the participants than their current navigational method, participants walked the route both with and without the application. When walking with the app, participants were guided by the app. When walking without the app they used their own navigational method. During both walks a supervisor ensured the safety of the participant.During both walks, after each obstacle, participants were asked how safe they felt. We used a five point Likert scale where one stood for “feeling very safe” and five for “feeling very unsafe”.Qualitative feedback on the usability of the app was collected using the speak-a-lout method during walking and by interview afster walking.Results: Five visually impaired participated, one female and five males, age range from 30 to 78 and with varying levels of visual limitations. Three participants were familiar with the route and two walked the route for the first time.After each obstacle participants rated how safe they felt on a five point Likert scale. We normalized the results by deducting the scores of the walk without the app from the scores of the walk with the app. The average of all participants is shown in figure 2. When passing the traffic light halfway during the route we see that the participants feel safer with than without the app.Summarizing the qualitative feedback, we noticed that all participants indicated feeling supported by the app. They found the type of instructions ideal for walking and learning new routes. Of the five participants, three found the length of the instructions appropriate and two found them too long. They would like to split the detailed instructions in a short instruction and the option for more detailed instructions. They felt that a detailed instruction gave too much information in a hazardous environment like a crossover. Two participants found the information focused on orientation not necessary, while three participants liked knowing their surroundings.Conclusion and discussion: Regarding the safety questions we see that participants felt safer with the app, especially when crossing the road with traffic lights. We believe this big difference in comparison to the other obstacles is due to the crossover being considered more dangerous than the other obstacles. This is reflected by their feedback in requesting less direct information at these locations.All participants indicated feeling supported and at ease with our application, stating they would use the application when walking new routes.Because of the small sample size we consider our results an indication that the app can be of help and a good start for further research on guiding people through an urban environment using beacons.
DOCUMENT
In deze presentatie wordt de ontwikkeling van een evidence-based en gepersonaliseerde hardloop-app in kaart gebracht, genaamd InteliRun. Er werd een pilot georganiseerd waarin 26 hardlopers de app hebben getest. Middels een vragenlijst en focusgroepen werd in kaart gebracht wat gebruiksvriendelijkheid en ervaringen met de app waren.
DOCUMENT