It is unknown how movement patterns that are learned carry over to the field. The objective was to deter- mine whether training during a jump-landing task would transfer to lower extremity kinematics and kinetics during sidestep cutting.Methods Forty healthy athletes were assigned to the ver- bal internal focus (IF, n = 10), verbal external focus (EF, n = 10), video (VI, n = 10) or control (CTRL, n = 10) group. A jump-landing task was performed as baseline followed by training blocks (TR1 and TR2) and a post-test. Group-spe- cific instructions were given in TR1 and TR2. In addition, participants in the IF, EF and VI groups were free to ask for feedback after every jump during TR1 and TR2. Retention was tested after 1 week. Transfer of learned skill was deter- mined by having participants perform a 45° unanticipated sidestep cutting task. 3D hip, knee and ankle kinematics and kinetics were the main outcome measures.Results During sidestep cutting, the VI group showed greater hip flexion ROM compared to the EF and IF groups (p < 0.001). The EF (p < 0.036) and VI (p < 0.004) groups had greater knee flexion ROM compared to the IF group. Conclusions Improved jump-landing technique car- ried over to sidestep cutting when stimulating an external attentional focus combined with self-controlled feedback. Transfer to more sport-specific skills may demonstrate potential to reduce injuries on the field. Clinicians and practitioners are encouraged to apply instructions that stimulate an external focus of attention, of which visual instructions seem to be very powerful.
Background: In team handball an anterior cruciate ligament (ACL) injury often occurs during landing after a jump shot. Many intervention programs try to reduce the injury rate by instructing the athletes to land safer. Video feedback is an effective way to provide feedback although little is known about its influence on landing technique in sport-specific situations. Objective: To test the effectiveness of a video overlay feedback method on landing technique in elite handball players. Method: Sixteen elite female handball players were assigned to a Control or Video Group. Both groups performed jump shots in a pre-test, two training sessions (TR1 & TR2) and a post-test. The Video Group received video feedback of an expert model with an overlay of their own jump shots in TR1 and TR2 whilst the Control Group did not. Main outcome measures were sagittal ankle, knee and hip angles during initial contact (IC), maximum (MAX) and range of motion (ROM), in addition to the Landing Error Scoring System (LESS) score. One 2x4 repeated measures ANOVA was conducted to analyze group, time and interaction effects of all kinematic outcome measures and the LESS score. Results: The Video Group displayed significant improvement in knee and hip flexion at IC, MAX and ROM. In addition, MAX ankle flexion and their LESS score improved an average of 8.1 in the pre-test to 4.0 in the post-test. When considering performance variables, no differences between Control Group and Video Group were found in shot accuracy or vertical jump height, whilst horizontal jump distance in the Video Group became greater over time. Conclusion: Overlay visual feedback is an effective method to improve landing kinematics during a sport-specific jump shot. Further research is now warranted to determine the long-term effects and transfer to training and game situations.
BACKGROUND: Implicit (IF) and explicit (EF) feedback are two motor learning strategies demonstrated to alter movement patterns. There is conflicting evidence on which strategy produces better outcomes. The purpose of this study was to examine the effects of reduced IF and EF video feedback on lower extremity landing mechanics. METHODS: Thirty participants (24 ± 2 years, 1.7 ± 0.1 m, 70 ± 11 kg) were randomly assigned to three groups: IF (n = 10), EF (n = 10), and control (CG) (n = 10). They performed twelve box-drop jumps three times a week on the training sessions for six weeks. Only IF and EF groups received video feedback on the training sessions. IF was cued to focus their attention on the overall jump, while EF was cued to focus on position of their knees. 3D lower extremity biomechanics were tested on testing sessions with no feedback. All sessions were at least 24 h apart from another. Testing sessions included baseline testing (pretest), testing after 3 training sessions with 100% feedback (pst1), testing after 6 training sessions with 33.3% feedback (pst2), testing after 6 training sessions with 16.6% feedback (Pst3), and testing 1 month after with no feedback (retention - ret). ANOVA compared differences between groups and time at initial contact and peak for hip flexion (HF, °) and abduction angle (HA, °), hip abduction moment (HAM, Nm/kgm), knee flexion (KF, °) and abduction angle (KA, °), knee abduction moment (KAM, Nm/kgm) and VGRF (N) (p < 0.05). RESULTS: A significant main effect for group was found between IF and EF groups for HA (IF = - 6.7 ± 4; EF = - 9.4 ± 4.1) and KAM (IF = 0.05 ± 0.2; EF = - 0.07 ± 0.2) at initial contact, and peaks HA (IF = - 3.5 ± 4.5; EF = - 7.9 ± 4.7) and HAM (IF = 1.1 ± 0.6; EF = 0.9 ± 0.4). A significant main effect for time at initial contact for HF (pre = 32.4 ± 3.2; pst2 = 36.9 ± 3.2; pst3 = 37.9 ± 3.7; ret. = 34.1 ± 3.7), HAM (pre = 0.1 ± 0.1; pst1 = 0.04 ± 0.1; pst3 = 0.1 ± 0.01), KA (pre = 0.7 ± 1.1; pst1 = 0.2 ± 1.2; pst3 = 1.7 ± 1), and KAM (pre = 0.003 ± 0.1; pst3 = 0.01 ± 0.1) was found. DISCUSSION/CONCLUSION: We found that implicit feedback produced positive changes in landing mechanics while explicit feedback degraded motor learning. Our results indicate that implicit feedback should be used in programs to lower the ACL injury risk. We suggest that implicit feedback should be frequent in the beginning and not be reduced as much following the acquisition phase.
LINK