This book focuses on one particular way to promote the urban knowledge economy: the creation of knowledge ‘hotspots’.
Humidification is not a common procedure in many buildings in the Netherlands. An exception are buildings used for healthcare, especially hospitals. There, e.g. in operating theatres, relative humidity (RH) generally is controlled stringently at levels around 50%. From an energy point-of-view humidification is an energy-intensive activity. Currently, more than 10% of the total energy used in healthcare buildings is spent on humidification. The basis for an RH of around 50%, however, is not clear. Therefore, we pursued a scoping review to find evidence for specific RH thresholds in such facilities. In addition, an inventory was made of the current practice in the Netherlands. After analyzing the title and abstracts, the remaining references were read by two persons and scored on several topics. Guidelines and current practice were analyzed by referring to existing (inter)national guidelines and standards, and by contacting experts from Dutch hospitals through a survey and semi-structured interviews. Outcomes from the literature review were grouped into four different topics: 1) micro-organisms and viruses, 2) medical devices, 3) human physiology and 4) perception. No scientific evidence was found for the currently generally applied RH set-point of ~50%. Some studies suggest a minimum RH of 30% but the evidence is weak, with exception of medical devices if specifications require it. A lack of research that addresses more long-term exposure (a couple of days) and includes frail subjects, is noted. It was found that RH requirements are strictly followed in all hospitals consulted, some only focusing on the hot zones, but in many cases extended to the whole hospital. Steam humidification is mostly applied for hygienic reasons. but is quite energy-intensive. The conclusion t is that there is no solid evidence to support the RH-setpoints as currently applied in the Netherlands. It merely appears a code of practice. Therefore, there appears room for quick and significant energy savings, and CO2 emission reductions, when considering control at lower RH values or refraining from humidification at all, while still fulfilling the indoor environment requirements and not negatively influencing the health risk. This outcome can be applied directly in current practice with the available techniques.
LINK
The purpose of this study was to analyse knowledge management research trends to understand the development of the field using a combination of scientometric, bibliometric, and visualisation techniques, subsequently developing a normative framework of knowledge management from the results.282 articles between the years 2010–2015 were retrieved, analysed, and visualised to produce the state of knowledge management during the selected timeframe. The results of this study provide a visualisation of the current research trends to understand the development of the knowledge management discipline. There are signals that the literature about knowledge management is progressing towards academic maturity. This study is one of the first studies to combine bibliometric and scientometric methods to assess productivity along with visualisation, and subsequently provide a knowledge management framework drawing from the results of these methods.
MULTIFILE
Students in Higher Music Education (HME) are not facilitated to develop both their artistic and academic musical competences. Conservatoires (professional education, or ‘HBO’) traditionally foster the development of musical craftsmanship, while university musicology departments (academic education, or ‘WO’) promote broader perspectives on music’s place in society. All the while, music professionals are increasingly required to combine musical and scholarly knowledge. Indeed, musicianship is more than performance, and musicology more than reflection—a robust musical practice requires people who are versed in both domains. It’s time our education mirrors this blended profession. This proposal entails collaborative projects between a conservatory and a university in two cities where musical performance and musicology equally thrive: Amsterdam (Conservatory and University of Amsterdam) and Utrecht (HKU Utrechts Conservatorium and Utrecht University). Each project will pilot a joint program of study, combining existing modules with newly developed ones. The feasibility of joint degrees will be explored: a combined bachelor’s degree in Amsterdam; and a combined master’s degree in Utrecht. The full innovation process will be translated to a transferable infrastructural model. For 125 students it will fuse praxis-based musical knowledge and skills, practice-led research and academic training. Beyond this, the partners will also use the Comenius funds as a springboard for collaboration between the two cities to enrich their respective BA and MA programs. In the end, the programme will diversify the educational possibilities for students of music in the Netherlands, and thereby increase their professional opportunities in today’s job market.
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
A-das-PK; een APK-straat voor rijhulpsystemen Uit recent onderzoek en vragen vanuit de autobranche blijkt een duidelijke behoefte naar goed onderhoud, reparatie en borging van de werking van Advanced Driver Assistance Systems (ADAS), vergelijkbaar met de reguliere APK. Een APK voor ADAS bestaat nog niet, maar de branche wil hier wel op te anticiperen en haar clientèle veilig laten rijden met de rijhulpsystemen. In 2022 worden 30 ADAS’s verplicht en zal de werking van deze systemen ook gedurende de levensduur van de auto gegarandeerd moeten worden. Disfunctioneren van ADAS, zowel in false positives als false negatives kan leiden tot gevaarlijke situaties door onverwacht rijgedrag van het voertuig. Zo kan onverwacht remmen door detectie van een niet bestaand object of op basis van verkeersborden op parallelwegen een kettingbotsing veroorzaken. Om te kijken welke gevolgen een APK heeft voor de autobranche wil A-das-PK voor autobedrijven kijken naar de benodigde apparatuur, opleiding en hard- en software voor een goed werkende APK-straat voor ADAS’s, zodat de kansrijke elementen in een vervolgonderzoek uitgewerkt kunnen worden.