Post-training quantization reduces the computational demand of Large Language Models (LLMs) but can weaken some of their capabilities. Since LLM abilities emerge with scale, smaller LLMs are more sensitive to quantization. In this paper, we explore how quantization affects smaller LLMs’ ability to perform retrieval-augmented generation (RAG), specifically in longer contexts. We chose personalization for evaluation because it is a challenging domain to perform using RAG as it requires long-context reasoning over multiple documents. We compare the original FP16 and the quantized INT4 performance of multiple 7B and 8B LLMs on two tasks while progressively increasing the number of retrieved documents to test how quantized models fare against longer contexts. To better understand the effect of retrieval, we evaluate three retrieval models in our experiments. Our findings reveal that if a 7B LLM performs the task well, quantization does not impair its performance and long-context reasoning capabilities. We conclude that it is possible to utilize RAG with quantized smaller LLMs.
MULTIFILE
DOCUMENT
This final installment in our e-learning series offers a comprehensive look at the current impact and future potential of data science across industries. Using real-world examples like medical image analysis and operational efficiencies at Rotterdam The Hague Airport, we showcase data science’s transformative capabilities. The video also introduces the promise of Large Language Models (LLMs) such as Chat GPT and the simplification brought by Automated Machine Learning (AutoML). Emphasizing the blend of technology and human insight, we explore the evolving landscape of AI and data science for businesses.
VIDEO