Conference Paper From the article: Abstract Learning analytics is the analysis and visualization of student data with the purpose of improving education. Literature reporting on measures of the effects of data-driven pedagogical interventions on learning and the environment in which this takes place, allows us to assess in what way learning analytics actually improves learning. We conducted a systematic literature review aimed at identifying such measures of data-driven improvement. A review of 1034 papers yielded 38 key studies, which were thoroughly analyzed on aspects like objective, affected learning and their operationalization (measures). Based on prevalent learning theories, we synthesized a classification scheme comprised of four categories: learning process, student performance, learning environment, and departmental performance. Most of the analyzed studies relate to either student performance or learning process. Based on the results, we recommend to make deliberate decisions on the (multiple) aspects of learning one tries to improve by the application of learning analytics. Our classification scheme with examples of measures may help both academics and practitioners doing so, as it allows for structured positioning of learning analytics benefits.
A short paper on the whats and the hows of learning technology standardization
From the article: "The educational domain is momentarily witnessing the emergence of learning analytics – a form of data analytics within educational institutes. Implementation of learning analytics tools, however, is not a trivial process. This research-in-progress focuses on the experimental implementation of a learning analytics tool in the virtual learning environment and educational processes of a case organization – a major Dutch university of applied sciences. The experiment is performed in two phases: the first phase led to insights in the dynamics associated with implementing such tool in a practical setting. The second – yet to be conducted – phase will provide insights in the use of pedagogical interventions based on learning analytics. In the first phase, several technical issues emerged, as well as the need to include more data (sources) in order to get a more complete picture of actual learning behavior. Moreover, self-selection bias is identified as a potential threat to future learning analytics endeavors when data collection and analysis requires learners to opt in."
MUSE supports the CIVITAS Community to increase its impact on urban mobility policy making and advance it to a higher level of knowledge, exchange, and sustainability.As the current Coordination and Support Action for the CIVITAS Initiative, MUSE primarily engages in support activities to boost the impact of CIVITAS Community activities on sustainable urban mobility policy. Its main objectives are to:- Act as a destination for knowledge developed by the CIVITAS Community over the past twenty years.- Expand and strengthen relationships between cities and stakeholders at all levels.- Support the enrichment of the wider urban mobility community by providing learning opportunities.Through these goals, the CIVITAS Initiative strives to support the mobility and transport goals of the European Commission, and in turn those in the European Green Deal.Breda University of Applied Sciences is the task leader of Task 7.3: Exploitation of the Mobility Educational Network and Task 7.4: Mobility Powered by Youth Facilitation.
Middels een RAAK-impuls aanvraag wordt beoogd de vertraging van het RAAK-mkb project Praktische Predictie t.g.v. corona in te halen. In het project Praktische Predictie wordt een prototype app ontwikkeld waarmee fysiotherapeuten in een vroeg stadium het chronisch worden van lage rugpijn kunnen voorspellen. Om chronische rugpijn te voorkomen is het belangrijk om in een vroeg stadium de kans hierop in te schatten door psychosociale en mogelijk andere risicofactoren op chronische pijnklachten te herkennen en hierop te interveniëren. Fysiotherapeuten zijn met deze vraag naar het lectoraat Werkzame factoren in Fysiotherapie en Paramedisch Handelen van de Hogeschool van Arnhem en Nijmegen gegaan en dit heeft aanleiding gegeven een onderzoek op te zetten waarin een dergelijke methodiek ontwikkeld wordt. De voorgestelde methodiek betreft een Clinical Decision Support Tool waarmee een geïndividualiseerde kans op chronische rugpijn kan worden bepaald gekoppeld aan een behandeladvies conform de lage rugpijn richtlijn. Hiervoor is eerst geïnventariseerd welke methoden fysiotherapeuten reeds gebruiken en welke in de literatuur worden genoemd. Op basis hiervan is een keuze gemaakt ten aanzien van data die digitaal verzameld worden in minimaal 16 fysiotherapiepraktijken waarbij patiënten gedurende 12 weken gevolgd worden. Met de verzamelde data worden met machine learning algoritmes ontwikkeld voor het berekenen van de kans op chroniciteit. De algoritmes worden ingebouwd in de Clinical Decision Support Tool: een gebruiksvriendelijke prototype app. Bij het ontwikkelen van de tool worden eindgebruikers (fysiotherapeuten en patiënten) intensief betrokken. Op deze manier wordt gegarandeerd dat de tool aansluit bij de wensen en behoeften van de doelgroep. De tool berekent de kans op chroniciteit en geeft een behandeladvies. Daarnaast kan de tool gebruikt worden om patiënten te informeren en te betrekken bij de besluitvorming. Vanwege de coronacrisis is er een aanzienlijke vertraging in de patiënten-instroom (doel n= 300) ontstaan die we met ondersteuning van een RAAK-impuls subsidie willen inlopen.
Het RAAK-MKB project "(G)een Moer Aan" heeft zich gericht op het ontwerpen van een veilige en effectieve ondersteuning van een cobot in een productieomgeving. De focus is hierbij gelegd op productiehandelingen die in veel sectoren voorkomen en die relatief veel arbeidstijd kosten, zoals het indraaien van moeren en bouten in een object. Binnen het project is veel kennis opgedaan dit heeft geresulteerd in gripperontwerpen die in staat zijn een bout in een flens te draaien. Daarnaast is kennis gegeneerd van vision technieken om gaten e.d. te detecteren, en het meenemen van (beleefde) veiligheid in het ontwerp van een cobot systeem. Deze nieuw opgedane kennis is erg bruikbaar voor zowel de beroepspraktijk als voor de studenten in het onderwijs. Dat maakt het relevant voor (her)gebruik middels het nieuwe open-acces e-learning platform van Fontys: Open Learning Labs. Door trainingsmateriaal te ontwikkelen dat betrekking heeft op onder andere het aspect veilig ontwerpen, worden toekomstige engineers (de studenten) en zittend personeel bij bedrijven bekend met nieuwe technieken die toepasbaar zijn in diverse sectoren waar met robots gewerkt wordt. Het doel van deze Top-up aanvraag is tweeledig: 1) Het vergroten van de zichtbaarheid van de resultaten uit het initiële RAAK-project, zowel richting onderwijs, onderzoek en beroepspraktijk. 2) Het realiseren van trainingsmateriaal t.b.v. het rekening houden met en veilig ontwerpen van cobotsystemen. Door o.a. kennis aan te dragen omtrent het doen van een correcte risico analyse van het proces. Dit zal bij toekenning stapsgewijs uitgevoerd worden: 1. Definiëren inhoud lesmodules en bijbehorende didactische werkvormen 2. Realisatie PR- & instructievideo's en onderwijsopdrachten 3. Realisatie E-learning lesmodule Dit alles gekoppeld aan het open-acces e-learning platform Open Learning Labs van Fontys.