Although learning analytics benefit learning, its uptake by higher educational institutions remains low. Adopting learning analytics is a complex undertaking, and higher educational institutions lack insight into how to build organizational capabilities to successfully adopt learning analytics at scale. This paper describes the ex-post evaluation of a capability model for learning analytics via a mixed-method approach. The model intends to help practitioners such as program managers, policymakers, and senior management by providing them a comprehensive overview of necessary capabilities and their operationalization. Qualitative data were collected during pluralistic walk-throughs with 26 participants at five educational institutions and a group discussion with seven learning analytics experts. Quantitative data about the model’s perceived usefulness and ease-of-use was collected via a survey (n = 23). The study’s outcomes show that the model helps practitioners to plan learning analytics adoption at their higher educational institutions. The study also shows the applicability of pluralistic walk-throughs as a method for ex-post evaluation of Design Science Research artefacts.
To adequately deal with the challenges faced within residential care for older people, such as the increasing complexity of care and a call for more person-centred practices, it is important that health care providers learn from their work. This study investigates both the nature of learning, among staff and students working within care for older people, and how workplace learning can be promoted and researched. During a longitudinal study within a nursing home, participatory and democratic research methods were used to collaborate with stakeholders to improve the quality of care and to promote learning in the workplace. The rich descriptions of these processes show that workplace learning is a complex phenomenon. It arises continuously in reciprocal relationship with all those present through which both individuals and environment change and co-evolve enabling enlargement of the space for possible action. This complexity perspective on learning refines and expands conventional beliefs about workplace learning and has implications for advancing and researching learning. It explains that research on workplace learning is itself a form of learning that is aimed at promoting and accelerating learning. Such research requires dialogic and creative methods. This study illustrates that workplace learning has the potential to develop new shared values and ways of working, but that such processes and outcomes are difficult to control. It offers inspiration for educators, supervisors, managers and researchers as to promoting conditions that embrace complexity and provides insight into the role and position of self in such processes.
This paper reports on a case study investigating learning outcomes at the individual and organisational level of a cross-institutional innovation project based on the SOAP approach. SOAP integrates Schooling of teachers, Organisational development of schools, Action- and development-oriented research, and Professional development of teachers. The innovation project was aimed at combining teachers, student teachers, and teacher educators in an alliance to design and develop new competence-based vocational educational arrangements for pupils. An inductive qualitative analysis of 37 semi-structured interviews among the participants revealed seven main categories of individual learning outcomes: attitudes, project design and management, collaboration, action theory, teaching practice, educational principles, and developments within secondary vocational education. Three main categories of organisational learning outcomes were identified: institution-level learning, project-level learning, and combining institution-level and project-level learning. A tension was identified between the participants' individual interests in learning and personal development, and the need for organisational learning aimed at improving organisational processes.
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.
Single-Use Plastics (SUPs) are at the centre of European Union Agenda aiming at reducing the plastic soup with the EU Directive 2019/904. SUPs reduction is pivotal also in the Dutch Government Agenda for the transition to a Circular Economy by 2050. Worldwide the data on SUPs use and disposal are impressive: humans use around 1.2 million plastic bottles per minute; approximately 91% of plastic is not recycled (www.earthday.org/fact-sheet-single-use-plastics/). While centralised processes of waste collection, disposal, and recycling strive to cope with such intense use of SUPs, the opportunities and constraints of establishing a networked grid of facilities enacting processes of SUPs collection and recycling with the active involvement of local community has remained unexplored. The hospitality sector is characterised by a widespread capillary network of small hospitality firms nested in neighbourhoods and rural communities. Our research group works with small hospitality firms, different stakeholders, and other research groups to prompt the transition of the hospitality sector towards a Circular Economy embracing not only the environmental and economic dimensions but also the social dimension. Hence, this project explores the knowledge and network needed to build an innovative pilot allowing to close the plastic loop within a hospitality facility by combining a 3D printing process with social inclusiveness. This will mean generating key technical and legal knowledge as well as a network of strategic experts and stakeholders to be involved in an innovative pilot setting a 3D printing process in a hospitality facility and establishing an active involvement of the local community. Such active involvement of the local inhabitants will be explored as SUPs collectors and end-users of upcycled plastics items realised with the 3D printer, as well as through opportunities of vocational training and job opportunities for citizens distant from the job market.