Phantom limb pain following amputation is highly prevalent as it affects up to 80% of amputees. Many amputees suffer from phantom limb pain for many years and experience major limitations in daily routines and quality of life. Conventional pharmacological interventions often have negative side-effects and evidence regarding their long-term efficacy is low. Central malplasticity such as the invasion of areas neighbouring the cortical representation of the amputated limb contributes to the occurrence and maintenance of phantom limb pain. In this context, alternative, non-pharmacological interventions such as mirror therapy that are thought to target these central mechanisms have gained increasing attention in the treatment of phantom limb pain. However, a standardized evidence-based treatment protocol for mirror therapy in patients with phantom limb pain is lacking, and evidence for its effectiveness is still low. Furthermore, given the chronic nature of phantom limb pain and suggested central malplasticity, published studies proposed that patients should self-deliver mirror therapy over several weeks to months to achieve sustainable effects. To achieve this training intensity, patients need to perform self-delivered exercises on a regular basis, which could be facilitated though the use of information and communication technology such as telerehabilitation. However, little is known about potential benefits of using telerehabilitation in patients with phantom limb pain, and controlled clinical trials investigating effects are lacking. The present thesis presents the findings from the ‘PAtient Centered Telerehabilitation’ (PACT) project, which was conducted in three consecutive phases: 1) creating a theoretical foundation; 2) modelling the intervention; and 3) evaluating the intervention in clinical practice. The objectives formulated for the three phases of the PACT project were: 1) to conduct a systematic review of the literature regarding important clinical aspects of mirror therapy. It focused on the evidence of applying mirror therapy in patients with stroke, complex regional pain syndrome and phantom limb pain. 2) to design and develop a clinical framework and a user-centred telerehabilitation for mirror therapy in patients with phantom limb pain following lower limb amputation. 3) to evaluate the effects of the clinical framework for mirror therapy and the additional effects of the teletreatment in patients with phantom limb pain. It also investigated whether the interventions were delivered by patients and therapists as intended.
DOCUMENT
OBJECTIVE: To analyse the prevalence of phantom (limb) pain over time and to analyse factors associated with phantom (limb) pain in a prospective cohort of amputees.DESIGN: A multicentre longitudinal study.PATIENTS: One hundred and thirty-four patients scheduled for amputation were included.METHODS: Patients filled in questionnaires before amputation, and postal questionnaires six months, 1(1/2) years and 2(1/2) years to a maximum of 3(1/2) years after amputation. Preoperative assessment included patients' characteristics, date, side and level of, and reason for amputation. The follow-up questionnaires assessed the frequencies of the experienced phantom pain, prosthetic use and walking distance. The occurrence of phantom pain was defined as phantom pain a few times a day or more frequently.RESULTS: Pre- and postoperative questionnaires were available filled in by 85 amputees (33 females and 52 males). The percentage of lower limb amputees with phantom pain was the highest at six months after amputation, and of upper limb amputees at 1(1/2) years. In general, more women than men experienced phantom pain. One and a half years and 2(1/2) years after amputation the highest percentages of the lower limb amputees used their prosthesis more than 4 hours a day (66%), after that time this percentage decreased to 60%. The results of the two-level logistic regression analysis to predict phantom pain show that phantom pain was less frequently present in men (odds ratio (OR) = 0.12), in lower limb amputees (OR = 0.14) and that it decreased in due course (OR = 0.53 for 1 year).CONCLUSION: Protective factors for phantom pain are: being male, having a lower limb amputation and the time elapsed since amputation.
DOCUMENT
Background:Current technology innovations, such as wearables, have caused surprising reactions and feelings of deep connection to devices. Some researchers are calling mobile and wearable technologies cognitive prostheses, which are intrinsically connected to individuals as if they are part of the body, similar to a physical prosthesis. Additionally, while several studies have been performed on the phenomenology of receiving and wearing a physical prosthesis, it is unknown whether similar subjective experiences arise with technology.Objective:In one of the first qualitative studies to track wearables in a longitudinal investigation, we explore whether a wearable can be embodied similar to a physical prosthesis. We hoped to gain insights and compare the phases of embodiment (ie, initial adjustment to the prosthesis) and the psychological responses (ie, accept the prosthesis as part of their body) between wearables and limb prostheses. This approach allowed us to find out whether this pattern was part of a cyclical (ie, period of different usage intensity) or asymptotic (ie, abandonment of the technology) pattern.Methods:We adapted a limb prosthesis methodological framework to be applied to wearables and conducted semistructured interviews over a span of several months to assess if, how, and to what extent individuals come to embody wearables similar to prosthetic devices. Twelve individuals wore fitness trackers for 9 months, during which time interviews were conducted in the following three phases: after 3 months, after 6 months, and at the end of the study after 9 months. A deductive thematic analysis based on Murray’s work was combined with an inductive approach in which new themes were discovered.Results:Overall, the individuals experienced technology embodiment similar to limb embodiment in terms of adjustment, wearability, awareness, and body extension. Furthermore, we discovered two additional themes of engagement/reengagement and comparison to another device or person. Interestingly, many participants experienced a rarely reported phenomenon in longitudinal studies where the feedback from the device was counterintuitive to their own beliefs. This created a blurring of self-perception and a dilemma of “whom” to believe, the machine or one’s self.Conclusions:There are many similarities between the embodiment of a limb prosthesis and a wearable. The large overlap between limb and wearable embodiment would suggest that insights from physical prostheses can be applied to wearables and vice versa. This is especially interesting as we are seeing the traditionally “dumb” body prosthesis becoming smarter and thus a natural merging of technology and body. Future longitudinal studies could focus on the dilemma people might experience of whether to believe the information of the device over their own thoughts and feelings. These studies might take into account constructs, such as technology reliance, autonomy, and levels of self-awareness.
DOCUMENT