Traces of condom lubricants in fingerprints can be valuable information in cases of sexual assault. Ideally, not only confirmation of the presence of the condom but also determination of the type of condom brand used can be retrieved. Previous studies have shown to be able to retrieve information about the condom brand and type from fingerprints containing lubricants using various analytical techniques. However, in practice fingerprints often appear latent and need to be detected first, which is often achieved by cyanoacrylate fuming. In this study, we developed a desorption electrospray ionization mass spectrometry (DESI-MS) method which, combined with principal component analysis and linear discriminant analysis (PCA-LDA), allows for high accuracy classification of condom brands and types from fingerprints containing condom lubricant traces. The developed method is compatible with cyanoacrylate (CA) fuming. We collected and analyzed a representative dataset for the Netherlands comprising 32 different condoms. Distinctive lubricant components such as polyethylene glycol (PEG), polydimethylsiloxane (PDMS), octoxynol-9 and nonoxynol-9 were readily detected using the DESI-MS method. Based on the analysis of lubricant spots, a 99.0% classification accuracy was achieved. When analyzing lubricant containing fingerprints, an overall accuracy of 90.9% was obtained. Full chemical images could be generated from fingerprints, showing the distribution of lubricant components such as PEG and PDMS throughout the fingerprint, while still allowing for classification. The developed method shows potential for the development of DESI-MS based analyses of CA treated exogenous compounds from fingerprints for use in forensic science.
MULTIFILE
BACKGROUND: Prediction models and prognostic scores have been increasingly popular in both clinical practice and clinical research settings, for example to aid in risk-based decision making or control for confounding. In many medical fields, a large number of prognostic scores are available, but practitioners may find it difficult to choose between them due to lack of external validation as well as lack of comparisons between them.METHODS: Borrowing methodology from network meta-analysis, we describe an approach to Multiple Score Comparison meta-analysis (MSC) which permits concurrent external validation and comparisons of prognostic scores using individual patient data (IPD) arising from a large-scale international collaboration. We describe the challenges in adapting network meta-analysis to the MSC setting, for instance the need to explicitly include correlations between the scores on a cohort level, and how to deal with many multi-score studies. We propose first using IPD to make cohort-level aggregate discrimination or calibration scores, comparing all to a common comparator. Then, standard network meta-analysis techniques can be applied, taking care to consider correlation structures in cohorts with multiple scores. Transitivity, consistency and heterogeneity are also examined.RESULTS: We provide a clinical application, comparing prognostic scores for 3-year mortality in patients with chronic obstructive pulmonary disease using data from a large-scale collaborative initiative. We focus on the discriminative properties of the prognostic scores. Our results show clear differences in performance, with ADO and eBODE showing higher discrimination with respect to mortality than other considered scores. The assumptions of transitivity and local and global consistency were not violated. Heterogeneity was small.CONCLUSIONS: We applied a network meta-analytic methodology to externally validate and concurrently compare the prognostic properties of clinical scores. Our large-scale external validation indicates that the scores with the best discriminative properties to predict 3 year mortality in patients with COPD are ADO and eBODE.
DOCUMENT
Background:The last decade has seen a substantial increase in the use of mobile health apps and research into the effects of those apps on health and health behaviors. In parallel, research has aimed at identifying population subgroups that are more likely to use those health apps. Current evidence is limited by two issues. First, research has focused on broad health apps, and little is known about app usage for a specific health behavior. Second, research has focused on comparing current users and current nonusers, without considering subgroups of nonusers.Objective:We aimed to provide profile distributions of current users, previous users, and informed nonusers, and to identify predictor variables relevant for profile classification.Methods:Data were available from 1683 people who participated in a Dutch walking event in Amsterdam that was held in September 2017. They provided information on demographics, self-reported walking behavior, and walking app usage, as well as items from User Acceptance of Information Technology, in an online survey. Data were analyzed using discriminant function analysis and multinomial logistic regression analysis.Results:Most participants were current walking app users (899/1683, 53.4%), while fewer participants were informed nonusers (663/1683, 39.4%) and very few were previous walking app users (121/1683, 7.2%). Current walking app users were more likely to report walking at least 5 days per week and for at least 30 minutes per bout (odds ratio [OR] 1.44, 95% CI 1.11-1.85; P=.005) and more likely to be overweight (OR 1.72, 95% CI 1.24-2.37; P=.001) or obese (OR 1.49, 95% CI 1.08-2.08; P=.005) as compared with informed nonusers. Further, current walking app users perceived their walking apps to be less boring, easy to use and retrieve information, and more helpful to achieve their goals. Effect sizes ranged from 0.10 (95% CI 0.08-0.30) to 1.58 (95% CI 1.47-1.70).Conclusions:The distributions for walking app usage appeared different from the distributions for more general health app usage. Further, the inclusion of two specific subgroups of nonusers (previous users and informed nonusers) provides important information for health practitioners and app developers to stimulate continued walking app usage, including making information in those apps easy to understand and making it easy to obtain information from the apps, as well as preventing apps from becoming boring and difficult to use for goal attainment.
DOCUMENT