This research investigates growth inhibitors for smart services driven by condition-based maintenance (CBM). Despite the fast rise of Industry 4.0 technologies, such as smart sensoring, internet of things, and machine learning (ML), smart services have failed to keep pace. Combined, these technologies enable CBM to achieve the lean goal of high reliability and low waste for industrial equipment. Equipment located at customers throughout the world can be monitored and maintained by manufacturers and service providers, but so far industry uptake has been slow. The contributions of this study are twofold. First, it uncovers industry settings that impede the use of equipment failure data needed to train ML algorithms to predict failures and use these predictions to trigger maintenance. These empirical settings, drawn from four global machine equipment manufacturers, include either under- or over-maintenance (i.e., either too much or too little periodic maintenance). Second, formal analysis of a system dynamics model based on these empirical settings reveals a sweet spot of industry settings in which such inhibitors are absent. Companies that fall outside this sweet spot need to follow specific transition paths to reach it. This research discusses these paths, from both a research and practice perspective.
LINK
Buildings need to be carefully operated and maintained for optimum health, comfort, energy performance, and utility costs. The increasing use of Machine Learning combined with Big Data in the building services sector has shown the potential to bring energy efficiency and cost-effectiveness. Therefore, upskilling and reskilling the current workforce is required to realize new possibilities. In addition, sharing and preserving knowledge are also required for the sustainable growth of professionals and companies. This formed the basis for the Dutch Research Council funded TransAct project. To increase access to education on the job, online learning is experiencing phenomenal growth. A study was conducted with two focus groups - professionals of a building service company and university researchers - to understand the existing challenges and the ways to improve knowledge sharing and upskilling through learning on the job. This study introduced an Enterprise Social Network platform that connects members and may facilitate knowledge sharing. As a community forum, Yammer from office 365 was used. For hosting project files, a SharePoint page was created. For online courses, the company’s online learning site was utilized. The log data from the online tools were analysed, semi-structured interviews and webinars were conducted and feedback was collected with google forms. Incentive models like social recognition and innovative project results were used to motivate the professionals for online activities. This paper distinguishes the impacts of initiatives on the behaviour of university researchers vs company employees.