BACKGROUND: The number of mobile apps that support smoking cessation is growing, indicating the potential of the mobile phone as a means to support cessation. Knowledge about the potential end users for cessation apps results in suggestions to target potential user groups in a dissemination strategy, leading to a possible increase in the satisfaction and adherence of cessation apps.OBJECTIVE: This study aimed to characterize potential end users for a specific mobile health (mHealth) smoking cessation app.METHODS: A quantitative study was conducted among 955 Dutch smokers and ex-smokers. The respondents were primarily recruited from addiction care facilities and hospitals through Web-based media via websites and forums. The respondents were surveyed on their demographics, smoking behavior, and personal innovativeness. The intention to use and the attitude toward a cessation app were determined on a 5-point Likert scale. To study the association between the characteristics and intention to use and attitude, univariate and multivariate ordinal logistic regression analyses were performed.RESULTS: The multivariate ordinal logistic regression showed that the number of previous quit attempts (odds ratio [OR] 4.1, 95% CI 2.4-7.0, and OR 3.5, 95% CI 2.0-5.9) and the score on the Fagerstrom Test of Nicotine Dependence (OR 0.8, 95% CI 0.8-0.9, and OR 0.8, 95% CI 0.8-0.9) positively correlates with the intention to use a cessation app and the attitude toward cessation apps, respectively. Personal innovativeness also positively correlates with the intention to use (OR 0.3, 95% CI 0.2-0.4) and the attitude towards (OR 0.2, 95% CI 0.1-0.4) a cessation app. No associations between demographics and the intention to use or the attitude toward using a cessation app were observed.CONCLUSIONS: This study is among the first to show that demographic characteristics such as age and level of education are not associated with the intention to use and the attitude toward using a cessation app when characteristics related specifically to the app, such as nicotine dependency and the number of quit attempts, are present in a multivariate regression model. This study shows that the use of mHealth apps depends on characteristics related to the content of the app rather than general user characteristics.
We describe the participation of the University of Amsterdams ILPS group in the Total Recall track at TREC 2015. Based on the provided Baseline Model Implemention (”BMI”) we set out to provide two more baselines we can compare to in future work. The two methods are bootstrapped by a synthetic document based on the query, use TF/IDF features, and sample with dynamic batch sizes which depend on the percentage of predicted relevant documents. We sample at least 1 percent of the corpus and stop sampling if a batch contains no relevant documents. The methods differ in the classifier used, i.e. Logistic Regression and Random Forest.
MULTIFILE
Background While low back pain occurs in nearly everybody and is the leading cause of disability worldwide, we lack instruments to accurately predict persistence of acute low back pain. We aimed to develop and internally validate a machine learning model predicting non-recovery in acute low back pain and to compare this with current practice and ‘traditional’ prediction modeling. Methods Prognostic cohort-study in primary care physiotherapy. Patients (n = 247) with acute low back pain (= one month) consulting physiotherapists were included. Candidate predictors were assessed by questionnaire at baseline and (to capture early recovery) after one and two weeks. Primary outcome was non-recovery after three months, defined as at least mild pain (Numeric Rating Scale > 2/10). Machine learning models to predict non-recovery were developed and internally validated, and compared with two current practices in physiotherapy (STarT Back tool and physiotherapists’ expectation) and ‘traditional’ logistic regression analysis. Results Forty-seven percent of the participants did not recover at three months. The best performing machine learning model showed acceptable predictive performance (area under the curve: 0.66). Although this was no better than a’traditional’ logistic regression model, it outperformed current practice. Conclusions We developed two prognostic models containing partially different predictors, with acceptable performance for predicting (non-)recovery in patients with acute LBP, which was better than current practice. Our prognostic models have the potential of integration in a clinical decision support system to facilitate data-driven, personalized treatment of acute low back pain, but needs external validation first.
MULTIFILE