Western-European consumers have become not only more demanding on product availability in retail outlets but also on other food attributes such as quality, integrity, and safety. When (re)designing food supply-chain networks, from a logistics point of view, one has to consider these demands next to traditional efficiency and responsiveness requirements. The concept ‘quality controlled logistics’ (QCL) hypothesizes that if product quality in each step of the supply chain can be predicted in advance, goods flows can be controlled in a pro-active manner and better chain designs can be established resulting in higher product availability, constant quality, and less product losses. The paper discusses opportunities of using real-time product quality information for improvement of the design and management of ‘AgriFood Supply Chain Networks’, and presents a preliminary diagnostic instrument for assessment of ‘critical quality’ and ‘logistics control’ points in the supply chain network. Results of a tomato-chain case illustrate the added value of the QCL concept for identifying improvement opportunities in the supply chain as to increase both product availability and quality. Future research aims for the further development of the diagnostic instrument and the quantification of costs and benefits of QCL scenarios.
DOCUMENT
Consumers expect product availability as well as product quality and safety in retail outlets. When designing or re-designing fruit and vegetables supply chain networks one has to take these demands into consideration next to traditional efficiency and responsiveness requirements. In food science literature, much attention has been paid to the development of Time-Temperature Indicators to monitor individually the temperature conditions of food products throughout distribution as well as quality decay models that are able to predict product quality based upon this information. This chapter discusses opportunities to improve the design and management of fruit and vegetables supply chain networks. If product quality in each step of the supply chain can be predicted in advance, good flows can be controlled in a pro-active manner and better chain designs can be established resulting in higher product availability, higher product quality, and less product losses in retail. This chapter works towards a preliminary diagnostic instrument, which can be used to assess supply chain networks on QCL (Quality Controlled Logistics). Findings of two exploratory case studies, one on the tomato chain and one on the mango chain, are presented to illustrate the value of this concept. Results show the opportunities and bottlenecks for quality controlled logistics depend on product—(e.g. variability in quality), process—(e.g. ability to use containers and sort on quality), network- (e.g. current level of cooperation), and market characteristics (e.g. higher prices for better products).
DOCUMENT
This paper presents challenges in city logistics for circular supply chains of e-e-waste. Efficient e-waste management is one of the strategies to save materials, critical minerals, and precious metals. E-waste collection and recycling have gained attention recently due to lower collection and recycling rates. However, implementing circular urban supply chains is a significant economic transformation that can only work if coordination decisions are solved between the actors involved. On the one hand, this requires the implementation of efficient urban collection technologies, where waste collection companies collaborate with manufacturers, urban waste treatment specialists, and city logistics service providers supported by digital solutions for visibility and planning. On the other hand, it also requires implementing urban and regional ecosystems connected by innovative CO2-neutral circular city logistics systems. These systems must smoothly and sustainably manage the urban and regional flow of resources and data, often at a large scale and with interfaces between industrial processes, private, and public actors. This paper presents future research questions from a city logistics perspective based on a European project aimed at developing a blueprint for systemic solutions for the circularity of plastics from applications of rigid PU foams used as insulation material in refrigerators.
MULTIFILE
For the development of a circular economy and the reduction of the environmental impact of supply chains, the sharing of reliable information throughout the entire chain is a prerequisite. In practice, this is difficult to realise which blockchain can improve. BCLivingLab aims to explore the application of blockchain technology in supply chain and logistics. The project develops four physical hubs and a virtual repository for blockchain knowledge to support SME’s in developing use-cases and experiment with blockchain applications. The ambition is to build a community of interested stakeholders and to be involved in current and future blockchain initiatives.
For the development of a circular economy and the reduction of the environmental impact of supply chains, the sharing of reliable information throughout the entire chain is a prerequisite. In practice, this is difficult to realise which blockchain can improve. BCLivingLab aims to explore the application of blockchain technology in supply chain and logistics. The project develops four physical hubs and a virtual repository for blockchain knowledge to support SME’s in developing use-cases and experiment with blockchain applications. The ambition is to build a community of interested stakeholders and to be involved in current and future blockchain initiatives.
In line with European sustainability goals, small and medium sized enterprises (SMEs) in the Dutch automotive aftermarket face the challenge of maintaining competitiveness while transitioning to circular business models. These models, supported by EU policies such as the Circular Economy Action Plan and the European Green Deal, drive innovation in product lifecycle management, recycling, and sustainability. However, as SMEs adapt to these changes, they must also navigate the growing competition from imported Chinese electric vehicles (EVs), which bring both opportunities and risks. Logistics plays a critical role in this transition, as optimizing supply chains, enhancing resource efficiency, and minimizing waste are essential for achieving circularity. Will the Chinese car manufacturers move their value chain to Europe? Or will they further localize in aftersales businesses? Either scenario would affect a chain of SMEs in automotive aftermarket. Focusing on the auto parts SMEs in the Brainport region, this research examines how SMEs can stay competitive by leveraging logistics strategies to support circular practices, and navigate the challenges posed by the influx of Chinese EVs while remaining resilient and adaptable in the automotive aftermarket value chain. Together with our consortium partners, we help the regional SMEs in the automotive aftermarket with: 1. Mapping out logistical challenges and objectives, 2. Risk mitigation and demand planning, 3. Strategic supply chain development. Involving Fontys International Business graduation projects on data analysis, this project combines quantitative and qualitative insights to examine the transition of automotive aftermarket to an EV-dominated future. The SMEs in our consortium network are drive to adapt to the evolving landscape by investing in new measures. Through scenario assessment, we help them with scenario strategies in circular transition. For a broader impact, this project brings SMEs, branch and public organizations together and presents shared responsibilities in creating a resilient supply chain.