Within the FREVUE project 80 fully electric freight vehicles have been deployed. It showed that city logistics operations can be performed by electric freight vehicles, but that at the moment the high vehicle purchasing costs are still a barrier for large scale utilisation of electric freight vehicles for logistics operations. Only for small EFVs (lighter than 3.5 tons) a short term feasible business case is possible. For the larger vans and rigid trucks, a feasible business case is not yet possible from an operator’s perspective, often not even with subsidies. Copyright © 2018 Society of Automotive Engineers of Japan, Inc. All rights reserved
Although urban agriculture as a way to come to sustainable urban food systems can be questioned and we have to be aware not falling into a ‘local trap’ regarding its benefits (Born & Purcell, 2006), initiatives for urban agriculture emerge all over the world. Some of these primarily focus on achieving social and educational goals while others try to become an (high tech) alternative to existing food supply chains. Whichever the goals of urban agriculture, in practice many of these initiatives have difficulties in their (logistics) operations. Research on urban agriculture and local‐for‐local food supply chains mainly focuses on environmental and economic benefits, alternative production techniques, short food supply chains (logistics infrastructure) or socio‐economic benefits of urban agriculture. So far, the alignment of urban agriculture goals with the chosen logistics concept – which includes more aspects than only infrastructure – has not gained much attention. This paper tries to fill this gap through an exploration of urban agriculture projects – both low and high tech – from around the world by using the integrated logistics concept (Van Goor et al., 2003). The main question to be answered in this paper is: to what extend can the integrated logistics concept contribute to understanding logistics drivers and barriers of urban agriculture projects? To answer this question, different urban agriculture projects were studied through information on their websites and an internet based questionnaire with key players in these projects. Our exploration shows that the ILC is a useful tool for determining logistics drivers and barriers and that there is much potential in using this concept when planning for successful urban agriculture projects.
MULTIFILE
The growth in urban population and economic upturnis leading to higher demand for construction, repairand renovation works in cities. Houses, public utilities,retail spaces, offices and infrastructure need toadapt to cope with the increasing number of residentsand visitors, urban functions and changing standards.Construction projects contribute to more attractive,sustainable and economically viable urban areas oncethey are finished. However, transport activities relatedto construction works have negative impacts on thesurrounding community if not handled appropriately.It is estimated that 15 to 20 percent of heavy goodsvehicles in cities are related to construction, and 30to 40 percent of light commercial vans [1]. In the citiesstudied in the CIVIC project, construction-relatedtransport was found to be one of the biggest challengesto improving sustainability. Smarter, cleaner and saferconstruction logistics solutions in urban areas areneeded for environmental, societal and economicreasons. However, in many European cities and metropolitanareas the sense of urgency is not evident or alack of knowledge is creating passivity.
ATAL: Automated Transport and Logistics Automatisering van transportmodaliteiten is overal ter wereld gaande. Met een Duurzaam Living Lab kunnen multimodale geautomatiseerde transportoperaties verder in de praktijk duurzaam en opschaalbaar worden ontwikkeld. Hierbij worden beleidsmakers en organisaties ondersteund in deze transitie. De maatschappelijke voordelen van grootschalige uitrol van Automated Trucks en Platooning, Automated Train Operations en Autonomous Sailing zijn onder andere minder energieverbruik en emissies, betere doorstroming en betere verkeersveiligheid. De Duurzame Living Lab heeft betrekking op het haven-achterland vervoer van Rotterdam richting Duitsland en België. Het wegvervoer maakt gebruik van de TULIP-Corridor, water en spoor modaliteit volgen de MIRT goederencorridors tot in het Ruhrgebied.
The research, supported by our partners, sets out to understand the drivers and barriers to sustainable logistics in port operations using a case study of drone package delivery at Rotterdam Port. Beyond the technical challenges of drone technology as an upcoming technology, it needs to be clarified how drones can operate within a port ecosystem and how they could contribute to sustainable logistics. KRVE (boatmen association), supported by other stakeholders of Rotterdam port, approached our school to conduct exploratory research. Rotterdam Port is the busiest port in Europe in terms of container volume. Thirty thousand vessels enter the port yearly, all needing various services, including deliveries. Around 120 packages/day are delivered to ships/offices onshore using small boats, cars, or trucks. Deliveries can take hours, although the distance to the receiver is close via the air. Around 80% of the packages are up to 20kg, with a maximum of 50kg. Typical content includes documents, spare parts, and samples for chemical analysis. Delivery of packages using drones has advantages compared with traditional transport methods: 1. It can save time, which is critical to port operators and ship owners trying to reduce mooring costs. 2. It can increase logistic efficiency by streamlining operations. 3. It can reduce carbon emissions by limiting the use of diesel engines, boats, cars, and trucks. 4. It can reduce potential accidents involving people in dangerous environments. The research will highlight whether drones can create value (economic, environmental, social) for logistics in port operations. The research output links to key national logistic agenda topics such as a circular economy with the development of innovative logistic ecosystems, energy transition with the reduction of carbon emissions, societal earning potential where new technology can stimulate the economy, digitalization, key enabling technology for lean operations, and opportunities for innovative business models.
Road freight transport contributes to 75% of the global logistics CO2 emissions. Various European initiatives are calling for a drastic cut-down of CO2 emissions in this sector [1]. This requires advanced and very expensive technological innovations; i.e. re-design of vehicle units, hybridization of powertrains and autonomous vehicle technology. One particular innovation that aims to solve this problem is multi-articulated vehicles (road-trains). They have a smaller footprint and better efficiency of transport than traditional transport vehicles like trucks. In line with the missions for Energy Transition and Sustainability [2], road-trains can have zero-emission powertrains leading to clean and sustainable urban mobility of people and goods. However, multiple articulations in a vehicle pose a problem of reversing the vehicle. Since it is extremely difficult to predict the sideways movement of the vehicle combination while reversing, no driver can master this process. This is also the problem faced by the drivers of TRENS Solar Train’s vehicle, which is a multi-articulated modular electric road vehicle. It can be used for transporting cargo as well as passengers in tight environments, making it suitable for operation in urban areas. This project aims to develop a reverse assist system to help drivers reverse multi-articulated vehicles like the TRENS Solar Train, enabling them to maneuver backward when the need arises in its operations, safely and predictably. This will subsequently provide multi-articulated vehicle users with a sustainable and economically viable option for the transport of cargo and passengers with unrestricted maneuverability resulting in better application and adding to the innovation in sustainable road transport.