The temporal dimension of acceptance is under-researched in technology acceptance research. Yet, people’s perceptions on technology use may change over time when gaining user experiences. Our 6-month home study deploying an interactive robot provides insight into the long-term use of use interactive technology in a domestic environment. We present a phased framework for the acceptance of interactive technology in domestic environments. Based on 97 interviews obtained from 21 participants living in different household types, the results provide an initial validation of our phased framework for long-term acceptance showing that acceptance phases are linked to certain user experiences which evolve over time when people gain experience with the technology. Involving end users in the early stages of development helps researchers understand the cultural and social contexts of acceptance and enables developers to apply this gained knowledge into their future designs.
DOCUMENT
In the Netherlands, client and family participation in care for people with intellectual disabilities has been in vogue for a long time, and increasingly receives attention (KPMG and Vilans 2017). However, the perspective and experiential knowledge of service users and relatives is often still insuBiciently used for the co-creation of care. The professional perspective is often still dominant. In addition, professionals mainly focus on clients and less on relatives, even though relatives often play an important role in the client’s (quality of) life (Wiersma 2017). The project ‘Inclusive Collaboration in Disability Care’[1] (ICDC) focusses on enhancing equal communication between people with intellectual disabilities, their relatives, and professional caregivers, and hence contributes to redressing power imbalances in longterm care. It investigates the question: “How can the triangle of client, relative and professional caregiver together co-create better care and support?”.
DOCUMENT
Future work processes are going to change in several aspects. The working population (at least in Western European countries) is decreasing, while average age of employees increases. Their productivity is key to continuity in sectors like healthcare and manufacturing. Health and safety monitoring, combined with prevention measures must contribute to longer, more healthy and more productive working careers. The ‘tech-optimist’ approach to increase productivity is by means of automation and robotization, supported by IT, AI and heavy capital investments. Unfortunately, that kind of automation has not yet fulfilled its full promise as productivity enhancer as the pace of automation is significantly slower than anticipated and what productivity is gained -for instance in smart industry and healthcare- is considered to be ‘zero-sum’ as flexibility is equally lost (Armstrong et al., 2023). Simply ‘automating’ tasks too often leads to ‘brittle technology’ that is useless in unforeseen operational conditions or a changing reality. As such, it is unlikely to unlock high added-value. In healthcare industry we see “hardly any focus on research into innovations that save time to treat more patients.” (Gupta Strategists, 2021). Timesaving, more than classic productivity, should be the leading argument in rethinking the possibilities of human-technology collaboration, as it allows us to reallocate our human resources towards ‘care’, ’craft’ and ’creativity’.
DOCUMENT