Background: The substitution of healthcare is a way to control rising healthcare costs. The Primary Care Plus (PC+) intervention of the Dutch ‘Blue Care’ pioneer site aims to achieve this feat by facilitating consultations with medical specialists in the primary care setting. One of the specialties involved is dermatology. This study explores referral decisions following dermatology care in PC+ and the influence of predictive patient and consultation characteristics on this decision. Methods: This retrospective study used clinical data of patients who received dermatology care in PC+ between January 2015 and March 2017. The referral decision following PC+, (i.e., referral back to the general practitioner (GP) or referral to outpatient hospital care) was the primary outcome. Stepwise logistic regression modelling was used to describe variations in the referral decisions following PC+, with patient age and gender, number of PC+ consultations, patient diagnosis and treatment specialist as the predicting factors. Results: A total of 2952 patients visited PC+ for dermatology care. Of those patients with a registered referral, 80.2% (N = 2254) were referred back to the GP, and 19.8% (N = 558) were referred to outpatient hospital care. In the multivariable model, only the treating specialist and patient’s diagnosis independently influenced the referral decisions following PC+. Conclusion: The aim of PC+ is to reduce the number of referrals to outpatient hospital care. According to the results, the treating specialist and patient diagnosis influence referral decisions. Therefore, the results of this study can be used to discuss and improve specialist and patient profiles for PC+ to further optimise the effectiveness of the initiative.
Low-grade inflammation and metabolic syndrome are seen in many chronic diseases, including rheumatoid arthritis (RA) and osteoarthritis (OA). Lifestyle interventions which combine different non-pharmacological therapies have shown synergizing effects in improving outcomes in patients with other chronic diseases or increased risk thereof, especially cardiovascular disease. For RA and metabolic syndrome-associated OA (MSOA), whole food plant-based diets (WFPDs) have shown promising results. A WFPD, however, had not yet been combined with other lifestyle interventions for RA and OA patients. In this protocol paper, we therefore present Plants for Joints, a multidisciplinary lifestyle program, based on a WFPD, exercise, and stress management. The objective is to study the effect of this program on disease activity in patients with RA (randomized controlled trial [RCT] 1), on a risk score for developing RA in patients with anti-citrullinated protein antibody (ACPA) positive arthralgia (RCT 2) and on pain, stiffness, and function in patients with MSOA (RCT 3), all in comparison with usual care.We designed three 16-week observer-blind RCTs with a waiting-list control group for patients with RA with low to moderate disease activity (2.6 ≤ Disease Activity Score [DAS28] ≤ 5.1, RCT 1, n = 80), for patients at risk for RA, defined by ACPA-positive arthralgia (RCT 2, n = 16) and for patients with metabolic syndrome and OA in the knee and/or hip (RCT 3, n = 80). After personal counseling on diet and exercise, participants join 10 group meetings with 6-12 other patients to receive theoretical and practical training on a WFPD, exercise, and stress management, while medication remains unchanged. The waiting-list control group receives usual care, while entering the program after the RCT. Primary outcomes are: difference in mean change between intervention and control groups within 16 weeks for the DAS28 in RA patients (RCT 1), the RA-risk score for ACPA positive arthralgia patients (RCT 2), and the Western Ontario and McMaster Universities Arthritis Index (WOMAC) score for MSOA patients (RCT 3). Continued adherence to the lifestyle program is measured in a two-year observational extension study.
Background Inconsistent descriptions of Lumbar multifidus (LM) morphology were previously identified, especially in research applying ultrasonography (US), hampering its clinical applicability with regard to diagnosis and therapy. The aim of this study is to determine the LM-sonoanatomy by comparing high-resolution reconstructions from a 3-D digital spine compared to standard LM-ultrasonography. Methods An observational study was carried out. From three deeply frozen human tissue blocks of the lumbosacral spine, a large series of consecutive photographs at 78 µm interval were acquired and reformatted into 3-D blocks. This enabled the reconstruction of (semi-)oblique cross-sections that could match US-images obtained from a healthy volunteer. Transverse and oblique short-axis views were compared from the most caudal insertion of LM to L1. Results Based on the anatomical reconstructions, we could distinguish the LM from the adjacent erector spinae (ES) in the standard US imaging of the lower spine. At the lumbosacral junction, LM is the only dorsal muscle facing the surface. From L5 upwards, the ES progresses from lateral to medial. A clear distinction between deep and superficial LM could not be discerned. We were only able to identify five separate bands between every lumbar spinous processes and the dorsal part of the sacrum in the caudal anatomical cross-sections, but not in the standard US images. Conclusion The detailed cross-sectional LM-sonoanatomy and reconstructions facilitate the interpretations of standard LM US-imaging, the position of the separate LM-bands, the details of deep interspinal muscles, and demarcation of the LM versus the ES. Guidelines for electrode positioning in EMG studies should be refined to establish reliable and verifiable findings. For clinical practice, this study can serve as a guide for a better characterisation of LM compared to ES and for a more reliable placement of US-probe in biofeedback.
MULTIFILE