The increasing share of renewable production like wind and PV poses new challenges to our energy system. The intermittent behavior and lack of controllability on these sources requires flexibility measures like storage and conversion. Production, consumption, transportation, storage and conversion systems become more intertwined. The increasing complexity of the system requires new control strategies to fulfill existing requirements.The SynergyS project addresses the main question how to operate increasingly complex energy systems in a controllable, robust, safe, affordable, and reliable way. Goal of the project is to develop and test a smart control system for a multi-commodity energy system (MCES), with electricity, hydrogen and heat. In scope are an industrial cluster (Chemistry Park Delfzijl) and a residential cluster (Leeuwarden) and their mutual interaction. Results are experimentally tested in two real-life demo-sites scale models: Centre of Expertise Energy (EnTranCe) and The Green Village (TU Delft) represent respectively the industrial and residential cluster.The result will be a market-driven control system to operate a multi-commodity energy system, integrating the industrial and residential cluster. The experimental setup is a combination of physical demo-site assets complemented with (digital) asset models. Experimental validation is based on a demo-scenario including real time data, simulated data and several stress tests.In this session we’ll elaborate more on the project and present (preliminary) results on the testing criteria, scenarios and experimental setup.
LINK
In the Dutch construction industry, the demand for advanced information storage and sharing is growing due to the complexity of construction projects. Limitations of traditional methods include lack of transparency and inefficient communication. Blockchain offers a promising solution by enabling decentralized storage and immutable recording of data increasing transparency and efficiency in the construction supply chain. Combining a Common Data Environment with the InterPlanetary File System – decentralized file storage and exchange, and a powerful tool for secure, efficient and reliable data management in construction – can emerge to improve cooperation between parties increasing effectiveness of projects.
DOCUMENT
Introduction Negative pain-related cognitions are associated with persistence of low-back pain (LBP), but the mechanism underlying this association is not well understood. We propose that negative pain-related cognitions determine how threatening a motor task will be perceived, which in turn will affect how lumbar movements are performed, possibly with negative long-term effects on pain. Objective To assess the effect of postural threat on lumbar movement patterns in people with and without LBP, and to investigate whether this effect is associated with task-specific pain-related cognitions. Methods 30 back-healthy participants and 30 participants with LBP performed consecutive two trials of a seated repetitive reaching movement (45 times). During the first trial participants were threatened with mechanical perturbations, during the second trial participants were informed that the trial would be unperturbed. Movement patterns were characterized by temporal variability (CyclSD), local dynamic stability (LDE) and spatial variability (meanSD) of the relative lumbar Euler angles. Pain-related cognition was assessed with the task-specific ‘Expected Back Strain’-scale (EBS). A three-way mixed Manova was used to assess the effect of Threat, Group (LBP vs control) and EBS (above vs below median) on lumbar movement patterns. Results We found a main effect of threat on lumbar movement patterns. In the threat-condition, participants showed increased variability (MeanSDflexion-extension, p<0.000, η2 = 0.26; CyclSD, p = 0.003, η2 = 0.14) and decreased stability (LDE, p = 0.004, η2 = 0.14), indicating large effects of postural threat. Conclusion Postural threat increased variability and decreased stability of lumbar movements, regardless of group or EBS. These results suggest that perceived postural threat may underlie changes in motor behavior in patients with LBP. Since LBP is likely to impose such a threat, this could be a driver of changes in motor behavior in patients with LBP, as also supported by the higher spatial variability in the group with LBP and higher EBS in the reference condition.
LINK
Doel is een slim werkend besturingsmechanisme voor multi-commodity energiesystemen (MCES) experimenteel toe te passen in de gebouwde omgeving, de industrie, en in hun onderlinge samenhang. Het mechanisme wordt ontworpen en gerealiseerd. De werking wordt in 2 praktijksituaties getest. Doel van het besturingsmechanisme is borging van de kwaliteiten van het energiesysteem (robuustheid, betrouwbaarheid, betaalbaarheid, veiligheid, acceptatie, efficiency en functioneren in het wenselijke regime) terwijl verschillende events op de proef wordt gesteld.