In order for techniques from Model Driven Engineering to be accepted at large by the game industry, it is critical that the effectiveness and efficiency of these techniques are proven for game development. There is no lack of game design models, but there is no model that has surfaced as an industry standard. Game designers are often reluctant to work with models: they argue these models do not help them design games and actually restrict their creativity. At the same time, the flexibility that model driven engineering allows seems a good fit for the fluidity of the game design process, while clearly defined, generic models can be used to develop automated design tools that increase the development’s efficiency.
This paper introduces and contextualises Climate Futures, an experiment in which AI was repurposed as a ‘co-author’ of climate stories and a co-designer of climate-related images that facilitate reflections on present and future(s) of living with climate change. It converses with histories of writing and computation, including surrealistic ‘algorithmic writing’, recombinatory poems and ‘electronic literature’. At the core lies a reflection about how machine learning’s associative, predictive and regenerative capacities can be employed in playful, critical and contemplative goals. Our goal is not automating writing (as in product-oriented applications of AI). Instead, as poet Charles Hartman argues, ‘the question isn’t exactly whether a poet or a computer writes the poem, but what kinds of collaboration might be interesting’ (1996, p. 5). STS scholars critique labs as future-making sites and machine learning modelling practices and, for example, describe them also as fictions. Building on these critiques and in line with ‘critical technical practice’ (Agre, 1997), we embed our critique of ‘making the future’ in how we employ machine learning to design a tool for looking ahead and telling stories on life with climate change. This has involved engaging with climate narratives and machine learning from the critical and practical perspectives of artistic research. We trained machine learning algorithms (i.e. GPT-2 and AttnGAN) using climate fiction novels (as a dataset of cultural imaginaries of the future). We prompted them to produce new climate fiction stories and images, which we edited to create a tarot-like deck and a story-book, thus also playfully engaging with machine learning’s predictive associations. The tarot deck is designed to facilitate conversations about climate change. How to imagine the future beyond scenarios of resilience and the dystopian? How to aid our transition into different ways of caring for the planet and each other?
Game Mechanics is aimed at game design students and industry professionals who want to improve their understanding of how to design, build, and test the mechanics of a game. Game Mechanics will show you how to design, test, and tune the core mechanics of a game—any game, from a huge role-playing game to a casual mobile phone game to a board game. Along the way, we’ll use many examples from real games that you may know: Pac-Man, Monopoly, Civilization, StarCraft II, and others. The authors provide two features. One is a tool called Machinations that can be used to visualize and simulate game mechanics on your own computer, without writing any code or using a spreadsheet. The other is a design pattern library, including the deep structures of game economies that generate challenge and many kinds of feedback loops.