Learning Analytics en bias – Learning analytics richt zich op het meten en analyseren van studentgegevens om onderwijs te verbeteren. Bakker onderscheidt hierin verschillende niveaus, zoals student analytics en institutional analytics, en focust op inclusion analytics, waarin gekeken wordt naar kansengelijkheid. Bias – systematische vooroordelen in data – kan vooroordelen in algoritmen versterken en zo kansenongelijkheid veroorzaken. De onderzoeksmethode maakt gebruik van het 4/5-criterium, waarbij fairness in uitkomsten gemeten wordt door te kijken of de kansen voor de beschermde groep minstens 80% zijn van die van de bevoorrechte groep.Onderzoeksaanpak – Bakker gebruikt machine learning om retentie na het eerste studiejaar te voorspellen en onderzoekt vervolgens verschillen tussen groepen studenten, zoals mbo-en vwo-studenten. Hij volgt drie stappen: (1) Data voorbereiden en modellen bouwen: Data worden opgesplitst en opgeschoond om accurate voorspelmodellen te maken. (2) Variabelen analyseren: Invloed van kenmerken op uitkomsten wordt beoordeeld voor verschillende groepen. (3) Fairness berekenen: Het 4/5-criterium wordt toegepast op metrics zoals accuraatheid en statistische gelijkheid om bias en ongelijkheden te identificeren. Resultaten, aanbevelingen en vervolgonderzoek – Uit het onderzoek blijkt dat kansengelijkheid bij veel opleidingen ontbreekt, met name voor mannen en mbo-studenten, die een hogere kans op uitval hebben. Bakker adviseert sensitieve kenmerken zoals migratieachtergrond mee te nemen in analyses op basis van informed consent. Daarnaast pleit hij voor meer flexibiliteit in het beleid, geïnspireerd door maatregelen tijdens de coronacrisis, die een positief effect hadden op studiesucces.Toekomstvisie – Bakker benadrukt dat niet elke ongelijkheid het gevolg is van discriminatie en roept op tot data-informed interventies om sociale rechtvaardigheid in het onderwijs te bevorderen. Zijn methode wordt open access beschikbaar gesteld, zodat ook andere instellingen deze kunnen toepassen en kansengelijkheid systematisch en bewust kunnen onderzoeken.
Doel van onderzoek is herontwerpen en testen van leereenheid Jeugdzorg op basis van inzet ‘samenwerkend leren, ondersteund door technologie’. Ogenschijnlijk is er ‘tevredenheid’ over de uitgevoerde leereenheid waarin studententeams een gezamenlijk product moeten opleveren, maar tegelijkertijd wordt slechts een deel van het onderwerp door studenten onderzocht. Het ‘samenwerkend leren’ is meestal beperkt tot verdelen taken en bijdragen op later moment samenvoegen. Ook worden mogelijkheden voor ondersteuning van het leerproces door technologie niet benut. In een herontwerp kan ‘werkelijk’ samenwerkend leren worden vormgegeven, door technologie ondersteund, met de student in de actieve modus. Hierdoor is het mogelijk om ‘samenwerkend leren’ aan bod te laten komen bij alle genoemde deelaspecten van het onderwerp. Na onderzoek naar het hoe het herontwerp eruit zou moeten zien, werden Moodle, de Teamtester, een samenwerkingscontract en peerreview ingezet. Na de module is gekeken of de gestelde doelen behaald zijn. Over het algemeen werd door zowel studenten als docenten effectievere samenwerking ervaren. De rol van de separaat ingezette onderdelen is ook onderzocht en staat beschreven in dit rapport.
In dit hoofdstuk zijn de ervaringen beschreven die Hogeschool INHolland opdeed met het stimuleren en faciliteren van ‘Visueel Leren’, het gebruik van digitale concept maps. Twee projecten met concept maps van de Digitale Universiteit (DU), een samenwerkingsverband tussen tien universiteiten en hogescholen, vormden de start.
In het project werken onderzoekers van het Lectoraat samen met publieke organisaties toe naar een tool waarmee onderstromen in het publieke debat rondom issues eerder kunnen worden opgemerkt. We exploreren met welk algoritme we patronen in geruchtvorming en mobilisatie kunnen opsporen, en tevens hoe we de interactie tussen newsroom-analisten en de output van een monitoring tool het beste kunnen vormgeven.Doel Het doel van dit project is een brede en structureel toepasbare aanpak van het issuemanagement: Hoe kunnen de communicatieprofessionals van publieke organisaties potentiële issues op sociale media vroegtijdig opmerken? Resultaten We willen dit bereiken door enerzijds kennis en inzicht te vergaren en anderzijds de uitkomsten daarvan voor publieke organisaties te vertalen in praktische handgrepen: tools, handleiding, training. Looptijd 01 oktober 2022 - 30 september 2024 Aanpak Via cases ingebracht door de praktijkpartners en focusgroepen staan we in nauw contact met het consortium. In de eerste werkpakketten onderzoeken we de verschillende cases aan de hand van discoursanalyse. De inzichten die we hierbij opdoen, gebruiken we vervolgens om te bekijken hoe we de interactie tussen mens en machine het beste kunnen vormgeven en wel zo dat er ten behoeve van de communicatie en het management van issues via interactieve visualisaties steeds weer triggers afgegeven worden. Op basis van de opgedane inzichten richten we een interface in. Deze maakt het analisten en communicatieprofessionals mogelijk om vroegtijdig issues te signaleren.
In het project werken onderzoekers van het Lectoraat samen met publieke organisaties toe naar een tool waarmee onderstromen in het publieke debat rondom issues eerder kunnen worden opgemerkt. We exploreren met welk algoritme we patronen in geruchtvorming en mobilisatie kunnen opsporen, en tevens hoe we de interactie tussen newsroom-analisten en de output van een monitoring tool het beste kunnen vormgeven.
Artificial Intelligence (AI) wordt realiteit. Slimme ICT-producten die diensten op maat leveren accelereren de digitalisering van de maatschappij. De grote innovaties van de komende jaren –zelfrijdende auto’s, spraakgestuurde virtuele assistenten, autodiagnose systemen, robots die autonoom complexe taken uitvoeren – zijn datagedreven en hebben een AI-component. Dit gaat de rol van professionals in alle domeinen, gezondheidzorg, bouwsector, financiële dienstverlening, maakindustrie, journalistiek, rechtspraak, etc., raken. ICT is niet meer volgend en ondersteunend (een ‘enabling’ technologie), maar de motor die de transformatie van de samenleving in gang zet. Grote bedrijven, overheidsinstanties, het MKB, en de vele startups in de Brainport regio zijn innovatieve datagedreven scenario’s volop aan het verkennen. Dit wordt nog eens versterkt door de democratisering van AI; machine learning en deep learning algoritmes zijn beschikbaar zowel in open source software als in Cloud oplossingen en zijn daarmee toegankelijk voor iedereen. Data science wordt ‘applied’ en verschuift van een PhD specialisme naar een HBO-vaardigheid. Het stadium waarin veel bedrijven nu verkeren is te omschrijven als: “Help, mijn AI-pilot is succesvol. Wat nu?” Deze aanvraag richt zich op het succesvol implementeren van AI binnen de context van softwareontwikkeling. De onderzoeksvraag van dit voorstel is: “Hoe kunnen we state-of-the-art data science methoden en technieken waardevol en verantwoord toepassen ten behoeve van deze slimme lerende ICT-producten?” De postdoc gaat fungeren als een linking pin tussen alle onderzoeksprojecten en opdrachten waarbij studenten ICT-producten met AI (machine learning, deep learning) ontwikkelen voor opdrachtgevers uit de praktijk. Door mee te kijken en mee te denken met de studenten kan de postdoc overzicht en inzicht creëren over alle cases heen. Als er overzicht is kan er daarna ook gestuurd worden op de uit te voeren cases om verschillende deelaspecten samen met de studenten te onderzoeken. Deliverables zijn rapporten, guidelines en frameworks voor praktijk en onderwijs, peer-reviewed artikelen en kennisdelingsevents.