The Maritime Spatial Planning (MSP) Challenge simulation platform helps planners and stakeholders understand and manage the complexity of MSP. In the interactive simulation, different data layers covering an entire sea region can be viewed to make an assessment of the current status. Users can create scenarios for future uses of the marine space over a period of several decades. Changes in energy infrastructure, shipping, and the marine environment are then simulated, and the effects are visualized using indicators and heat maps. The platform is built with advanced game technology and uses aspects of role-play to create interactive sessions; it can thus be referred to as serious gaming. To calculate and visualize the effects of planning decisions on the marine ecology, we integrated the Ecopath with Ecosim (EwE) food web modeling approach into the platform. We demonstrate how EwE was connected to MSP, considering the range of constraints imposed by running scientific software in interactive serious gaming sessions while still providing cascading ecological feedback in response to planning actions. We explored the connection by adapting two published ecological models for use in MSP sessions. We conclude with lessons learned and identify future developments of the simulation platform.
MULTIFILE
The MSP Challenge uses game technology and role-play to support communication and learning for Marine/Maritime Spatial Planning. Since 2011, a role-playing game, a board game and a digital interactive simulation platform have been developed. The MSP Challenge editions have been used in workshops, conferences, education, as well as for real life stakeholder engagement. The authors give an overview of the development of the MSP Challenge and reflect on the value of the approach as an engaging and ‘fun’ tool for building mutual understanding and communicating MSP.
DOCUMENT
The interaction of stakeholders is regarded key in modern environmental and spatial planning. Marine/maritime spatial planning (MSP) is an emerging marine policy domain, which is of great interest worldwide. MSP practices are characterized by diverse approaches and a lack of transnational cooperation. Actors with various backgrounds have to identify mismatches and synergies to jointly aim towards coherent and coordinated practices. The ‘Living Q’ is a communication method to make actors aware systematically about their viewpoints in an interactive, communicative and playful environment, while it draws on results of a proceeding ‘Q Methodology’ study. Results from ‘Living Q’ exercises with international expert’s groups from European Sea basins show that the method is capable to foster communication and interaction among actors participating in ‘Living Q’ exercises, while having the potential to generate added value to planning processes by actor interaction in a collaborative setting.
LINK
The implementation of marine spatial plans as required by the Directive on Maritime Spatial Planning (MSP) of the European Union (EU) poses novel demands for the development of decision support tools (DST). One fundamental aspect is the need for tools to guide decisions about the allocation of human activities at sea in ways that are ecosystem-based and lead to sustainable use of resources. The MSP Directive was the main driver behind the development of spatial and non-spatial DSTs for the analysis of marine and coastal areas across European seas. In this research we develop an analytical framework designed by DST software developers and managers for the analysis of six DSTs supporting MSP in the Baltic Sea, the North Sea, and the Mediterranean Sea. The framework compares the main conceptual, technical and practical aspects, by which these DSTs contribute to advancing the MSP knowledge base and identified future needs for the development of the tools. Results show that all of the studied DSTs include elements to support ecosystem-based management at different geographical scales (from national to macro-regional), relying on cumulative effects assessment and functionalities to facilitate communication at the science-policy interface. Based on our synthesis we propose a set of recommendations for knowledge exchange in relation to further DST developments, mechanisms for sharing experience among the user-developer community, and actions to increase the effectiveness of the DSTs in MSP processes.
LINK
Digitalization is gaining increasing attention in Higher Education (HE). The integrationof digital tools into instructional settings is particularly challenging, However, it offers manyopportunities to improve the learning process of students, especially in interdisciplinary teachingscenarios such as teaching sustainable usage of space and resources i.e. for the coastal zones and themarine areas. Worldwide, Marine Spatial Planning (MSP) and Integrated Coastal Zone Management(ICZM) are much needed approaches to manage and organize the increasing use of the sea andcoastal areas. Both are complex fields that are attracting more and more attention in interdisciplinaryHE. Correspondingly designed, the module ‘Planning and Management of Coastal Zones and SeaBasins’ at the University of Oldenburg, Germany, provides a case for integrating digital tools intoHE. In 2020, the digital serious game ‘MSP Challenge´ was used in an online learning format. Thisinteractive and collaborative tool supports informed decision making based on real and simulateddata, comparable to business (decision) processes based on environmental information systems(EIS). Therefore, the MSP Challenge game fosters not only the understanding of the complex topicbut additionally methodological skills which can be transferred to the usage EIS. While playing,students become able to (1) evaluate and simulate impacts of uses on coastal and marineenvironments, (2) describe the main interactions in ecosystems, (3) conceptualize information forsectoral or integrated MSP and (4) reflect on the role and use of data. In the presented case masterstudents studying “Water and Coastal Management” participated in the module. Moreover, thedigital serious game and the interdisciplinary topics of MSP and ICZM provides additionalopportunities to explore subtopics (e.g. IT-related) from other disciplinary perspectives.
LINK
Presentation discussing how simulation/serious game research and development can change in the age of digital twin technologies.
DOCUMENT
DOCUMENT
DOCUMENT
A keynote address at the online Gamification for Sustainable Development symposium
YOUTUBE
This paper presents the design of the offshore energy simulation CEL as a flow network, and its integration in the MSP Challenge 2050 simulation game platform. This platform is designed to aid learning about the key characteristics and complexity of marine or maritime spatial planning (MSP). The addition of CEL to this platform greatly AIDS MSP authorities in learning about and planning for offshore energy production, a highly topical and big development in human activities at sea. Rather than a standard flow network, CEL incorporates three additions to accommodate for the specificities of energy grids: an additional node for each team's expected energy, a split of each node representing an object into input and output parts to include the node's capacity, and bidirectional edges for all cables to enable more complex energy grid designs. Implemented with Dinic's algorithm it takes less than 30ms for the simulation to run for the average amount of grids included in an MSP Challenge 2050 game session. In this manner CEL enables MSP authorities and their energy stakeholders to use MSP Challenge 2050 for designing and testing more comprehensive offshore energy grids.
DOCUMENT