Aims: Prescribing errors among junior doctors are common in clinical practice because many lack prescribing competence after graduation. This is in part due to inadequate education in clinical pharmacology and therapeutics (CP&T) in the undergraduate medical curriculum. To support CP&T education, it is important to determine which drugs medical undergraduates should be able to prescribe safely and effectively without direct supervision by the time they graduate. Currently, there is no such list with broad-based consensus. Therefore, the aim was to reach consensus on a list of essential drugs for undergraduate medical education in the Netherlands. Methods: A two-round modified Delphi study was conducted among pharmacists, medical specialists, junior doctors and pharmacotherapy teachers from all eight Dutch academic hospitals. Participants were asked to indicate whether it was essential that medical graduates could prescribe specific drugs included on a preliminary list. Drugs for which ≥80% of all respondents agreed or strongly agreed were included in the final list. Results: In all, 42 (65%) participants completed the two Delphi rounds. A total of 132 drugs (39%) from the preliminary list and two (3%) newly proposed drugs were included. Conclusions: This is the first Delphi consensus study to identify the drugs that Dutch junior doctors should be able to prescribe safely and effectively without direct supervision. This list can be used to harmonize and support the teaching and assessment of CP&T. Moreover, this study shows that a Delphi method is suitable to reach consensus on such a list, and could be used for a European list.
MULTIFILE
This overview can be regarded as an atlas or travel guide with which the reader can follow a route along the various professorships. Chapter 2 centres on the professorships that are active in the field of Service Economy. Chapter 3 is dedicated to the professorships that are focussed on the field of Vital Region. Chapter 4 describes the professorships operating in the field of Smart Sustainable Industries. Chapter 5 deals with the professorships that are active in the field of the institution-wide themes of Design Based Education and Design Based Research. Lastly, in Chapter 6 we make an attempt to discover one or more connecting themes or procedures in the approach of the various professorships. This publication is not intended to give a definitive answer to the question as to what exactly NHL Stenden means by the concept of Design Based Research. The aim of this publication is to get an idea of everything that is happening in the NHL Stenden professorships and to pique one’s curiosity to find out more.
DOCUMENT
Non-discursive practices such as the economy and political constellations have always caused shifts in history. However, in the network society of today, these shifts have become omnipresent. Globalization of health and medical tourism have created a shift or rupture in the history of healthcare provision and into the lives of different stakeholders. The purpose of this paper is to detect and assess the rupture caused by global health care or medical tourism within the field of the written media, in order to define the reality of medical tourism as a trans-historical field. The methodology of this study comprised an extensive discourse analysis of written and new media performed over a time frame of more than a decade. Market, medical, ethical and patient discourses were detected along scientific sources, international and local newspapers. Results indicate that a change in the market discourse has caused a shift in the attitude towards medical tourism, where ethical voices are seen as submissive to the market logic. In the current time perspective, medical tourism has become more mature with the development of non-ethical counterparts such as organ tourism and reproductive tourism as a consequence. The research framework shows that the general public receives a normative message from the medical tourism sector.
LINK
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
Studenten in het beroepsonderwijs leren op de werkplek om een goede beroepsuitoefenaar te worden. Beoordeling van het werkplekleren gebeurt vaak op de werkplek en door de werkplek. Dit promotieonderzoek wil in kaart brengen hoe werkplekopleiders de student beoordelen.
In greenhouse horticulture harvesting is a major bottleneck. Using robots for automatic reaping can reduce human workload and increase efficiency. Currently, ‘rigid body’ robotic grippers are used for automated reaping of tomatoes, sweet peppers, etc. However, this kind of robotic grasping and manipulation technique cannot be used for harvesting soft fruit and vegetables as it will cause damage to the crop. Thus, a ‘soft gripper’ needs to be developed. Nature is a source of inspiration for temporary adhesion systems, as many species, e.g., frogs and snails, are able to grip a stem or leave, even upside down, with firm adhesion without leaving any damage. Furthermore, larger animals have paws that are made of highly deformable and soft material with adjustable grip size and place holders. Since many animals solved similar problems of adhesion, friction, contact surface and pinch force, we will use biomimetics for the design and realization of the soft gripper. With this interdisciplinary field of research we aim to model and develop functionality by mimicking biological forms and processes and translating them to the synthesis of materials, synthetic systems or machines. Preliminary interviews with tech companies showed that also in other fields such as manufacturing and medical instruments, adjustable soft and smart grippers will be a huge opportunity in automation, allowing the handling of fragile objects.