Alliance has been shown to predict treatment outcome in family-involved treatment for youth problems in several studies.However, meta-analytic research on alliance in family-involved treatment is scarce, and to date, no meta-analytic study on the alliance–outcome association in this field has paid attention to moderating variables. We included 28 studies reporting on the alliance–outcome association in 21 independent study samples of families receiving family-involved treatment for youth problems (N= 2126 families,Mage youth ranging from 10.6 to 16.1). We performed three multilevel meta-analyses of theassociations between three types of alliance processes and treatment outcome, and of several moderator variables. The quality of the alliance was significantly associated with treatment outcome (r= .183,p< .001). Correlations were significantly stronger when alliance scores of different measurement moments were averaged or added, when families were help-seekingrather than receiving mandated care and when studies included younger children. The correlation between alliance improvement and treatment outcome just failed to reached significance (r= .281,p= .067), and no significant correlation was found between split alliances and treatment outcome (r= .106,p= .343). However, the number of included studies reporting onalliance change scores or split alliances was small. Our findings demonstrate that alliance plays a small but significant role in the effectiveness of family-involved treatment. Future research should focus on investigating the more complex systemic aspects of alliance to gain fuller understanding of the dynamic role of alliance in working with families
MULTIFILE
Aim To provide insight into the basic characteristics of decision making in the treatment of symptomatic severe aortic stenosis (SSAS) in Dutch heart centres with specific emphasis on the evaluation of frailty, cognition, nutritional status and physical functioning/functionality in (instrumental) activities of daily living [(I)ADL]. Methods A questionnaire was used that is based on the European and American guidelines for SSAS treatment. The survey was administered to physicians and non-physicians in Dutch heart centres involved in the decision-making pathway for SSAS treatment. Results All 16 Dutch heart centres participated. Before a patient case is discussed by the heart team, heart centres rarely request data from the referring hospital regarding patients’ functionality (n = 5), frailty scores (n = 0) and geriatric consultation (n = 1) as a standard procedure. Most heart centres ‘often to always’ do their own screening for frailty (n = 10), cognition/mood (n = 9), nutritional status (n = 10) and physical functioning/functionality in (I)ADL (n = 10). During heart team meetings data are ‘sometimes to regularly’ available regarding frailty (n = 5), cognition/mood (n = 11), nutritional status (n = 8) and physical functioning/functionality in (I)ADL (n = 10). After assessment in the outpatient clinic patient cases are re-discussed ‘sometimes to regularly’ in heart team meetings (n = 10). Conclusions Dutch heart centres make an effort to evaluate frailty, cognition, nutritional status and physical functioning/functionality in (I)ADL for decision making regarding SSAS treatment. However, these patient data are not routinely requested from the referring hospital and are not always available for heart team meetings. Incorporation of these important data in a structured manner early in the decision-making process may provide additional useful information for decision making in the heart team meeting.
LINK
Background: Neurodevelopmental treatment (NDT) is a rehabilitation approach increasingly used in the care of stroke patients, although no evidence has been provided for its efficacy. Objective: To investigate the effects of NDT on the functional status and quality of life (QoL) of patients with stroke during one year after stroke onset. Methods: 324 consecutive patients with stroke from 12 Dutch hospitals were included in a prospective, non-randomised, parallel group study. In the experimental group (n = 223), nurses and physiotherapists from six neurological wards used the NDT approach, while conventional treatment was used in six control wards (n = 101). Functional status was assessed by the Barthel index. Primary outcome was poor outcome, defined as Barthel index ,12 or death after one year. QoL was assessed with the 30 item version of the sickness impact profile (SA-SIP30) and the visual analogue scale. Results: At 12 months, 59 patients (27%) in the NDT group and 24 (24%) in the non-NDT group had poor outcome (corresponding adjusted odds ratio = 1.7 (95% confidence interval, 0.8 to 3.5)). At discharge the adjusted odds ratio was 0.8 (0.4 to 1.5) and after six months it was 1.6 (0.8 to 3.2). Adjusted mean differences in the two QoL measures showed no significant differences between the study groups at six or 12 months after stroke onset. Conclusions: The NDT approach was not found effective in the care of stroke patients in the hospital setting. Health care professionals need to reconsider the use of this approach.
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
Every year in the Netherlands around 10.000 people are diagnosed with non-small cell lung cancer, commonly at advanced stages. In 1 to 2% of patients, a chromosomal translocation of the ROS1 gene drives oncogenesis. Since a few years, ROS1+ cancer can be treated effectively by targeted therapy with the tyrosine kinase inhibitor (TKI) crizotinib, which binds to the ROS1 protein, impairs the kinase activity and thereby inhibits tumor growth. Despite the successful treatment with crizotinib, most patients eventually show disease progression due to development of resistance. The available TKI-drugs for ROS1+ lung cancer make it possible to sequentially change medication as the disease progresses, but this is largely a ‘trial and error’ approach. Patients and their doctors ask for better prediction which TKI will work best after resistance occurs. The ROS1 patient foundation ‘Stichting Merels Wereld’ raises awareness and brings researchers together to close the knowledge gap on ROS1-driven oncogenesis and increase the options for treatment. As ROS1+ lung cancer is rare, research into resistance mechanisms and the availability of cell line models are limited. Medical Life Sciences & Diagnostics can help to improve treatment by developing new models which mimic the situation in resistant tumor cells. In the current proposal we will develop novel TKI-resistant cell lines that allow screening for improved personalized treatment with TKIs. Knowledge of specific mutations occurring after resistance will help to predict more accurately what the next step in patient treatment could be. This project is part of a long-term collaboration between the ROS1 patient foundation ‘Stichting Merels Wereld’, the departments of Pulmonary Oncology and Pathology of the UMCG and the Institute for Life Science & Technology of the Hanzehogeschool. The company Vivomicx will join our consortium, adding expertise on drug screening in complex cell systems.
Genematics aims to help life science researchers and medical specialists to discover, interpret and communicate valuable patterns in biological data. Our software combines the recovery of data from public scientific resources with instant interpretation. It does so in such a way that the expert only needs a few seconds instead of hours or even days to retrieve answers from the available biological data. Use of our software should accelerate the research for new drugs, new treatments and other innovations in health-related research to build a better tomorrow.