This case study presents the structured and evidence-informed approach toward developing a psychological assessment instrument within a national basketball federation. To this end, a two-phase approach was adopted. During the first phase, a focus group with the coaches was conducted to determine the key psychological characteristics pertinent to the case environment. This resulted in 10 identified key psychological characteristics. During the second phase, the results from the focus group were used to develop and conduct preliminary testing of a context-specific assessment instrument. Preliminary testing resulted in a refined instrument including nine characteristics. Based on the findings of this case study, the authors conclude this paper by outlining a number of reflections that can provide important considerations for sport psychologists, coaches, and talent identification and development organizations looking to develop and implement psychological assessment within their programs.
Walking meetings are a promising way to reduce unhealthy sedentary behavior at the office. Some aspects of walking meetings are however hard to assess using traditional research approaches that do not account well for the embodied experience of walking meetings. We conducted a series of 16 bodystorming sessions, featuring unusual walking meeting situations to engage participants (N=45) in a reflective experience. After each bodystorming, participants completed three tasks: a body map, an empathy map, and a rating of workload using the NASA-TLX scale. These embodied explorations provide insights on key themes related to walking meetings: material and tools, physical and mental demand, connection with the environment, social dynamics, and privacy. We discuss the role of technology and opportunities for technology-mediated walking meetings. We draw implications for the design of walking meeting technologies or services to account for embodied experiences, and the individual, social, and environmental factors at play.
Music performance anxiety (MPA) is one of the most reported psychological problems among musicians, posing a significant threat to the optimal performance, health, and psychological wellbeing of musicians. Most research on MPA treatment has focused on reducing symptoms of performance anxiety, but complete “cures” are uncommon. A promising addition or alternative that may help musicians enhance their performance under pressure, despite their anxiety, is pressure training (PT). In other high-pressure domains, such as sports and police work, pressure training has been proven effective in reducing choking and enhancing performance quality under pressure. Therefore, the aim of this narrative review is to explore the potential of pressure training in music settings. Specifically, we first provide a theoretical overview of current models explaining performance declines due to anxiety. Second, we discuss the current state of research on the effectiveness and application of pressure training in sports and police work as well as recent developments in pressure training interventions for music settings. While there is a limited number of studies investigating the effectiveness of pressure training on musicians' performance quality, research focusing on musicians' experiences has shown that pressure training can be particularly beneficial for enhancing performance skills, preparing for performances, and managing performance anxiety. Based on the reviewed literature, the final section points out suggestions for future research as well as recommendations for musicians, teachers, and music institutions for practical applications.
The postdoc candidate, Sondos Saad, will strengthen connections between research groups Asset Management(AM), Data Science(DS) and Civil Engineering bachelor programme(CE) of HZ. The proposed research aims at deepening the knowledge about the complex multidisciplinary performance deterioration prediction of turbomachinery to optimize cleaning costs, decrease failure risk and promote the efficient use of water &energy resources. It targets the key challenges faced by industries, oil &gas refineries, utility companies in the adoption of circular maintenance. The study of AM is already part of CE curriculum, but the ambition of this postdoc is that also AM principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop an AM material science line and will facilitate applied research experiences for students, in collaboration with engineering companies, operation &maintenance contractors and governmental bodies. Consequently, a new generation of efficient sustainability sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment being more sustainable with less CO2 footprint, with possible connections with other fields of study, such as Engineering, Economics &Chemistry. The project is also strongly contributing to the goals of the National Science Agenda(NWA), in themes of “Circulaire economie en grondstoffenefficiëntie”,”Meten en detecteren: altijd, alles en overall” &”Smart Industry”. The final products will be a framework for data-driven AM to determine and quantify key parameters of degradation in performance for predictive AM strategies, for the application as a diagnostic decision-support toolbox for optimizing cleaning &maintenance; a portfolio of applications &examples; and a new continuous learning line about AM within CE curriculum. The postdoc will be mentored and supervised by the Lector of AM research group and by the study programme coordinator(SPC). The personnel policy and job function series of HZ facilitates the development opportunity.