From Springer description: "We present the design considerations of an autonomous wireless sensor and discuss the fabrication and testing of the various components including the energy harvester, the active sensing devices and the power management and sensor interface circuits. A common materials platform, namely, nanowires, enables us to fabricate state-of-the-art components at reduced volume and show chemical sensing within the available energy budget. We demonstrate a photovoltaic mini-module made of silicon nanowire solar cells, each of 0.5 mm2 area, which delivers a power of 260 μW and an open circuit voltage of 2 V at one sun illumination. Using nanowire platforms two sensing applications are presented. Combining functionalised suspended Si nanowires with a novel microfluidic fluid delivery system, fully integrated microfluidic–sensor devices are examined as sensors for streptavidin and pH, whereas, using a microchip modified with Pd nanowires provides a power efficient and fast early hydrogen gas detection method. Finally, an ultra-low power, efficient solar energy harvesting and sensing microsystem augmented with a 6 mAh rechargeable battery allows for less than 20 μW power consumption and 425 h sensor operation even without energy harvesting."
LINK
Abstract: Unlike manufacturing technology for semiconductors and printed circuit boards, the market for traditional micro assembly lacks a clear public roadmap. More agile manufacturing strategies are needed in an environment in which dealing with change becomes a rule instead of an exception. In this paper, an attempt is made to bring production with universal micro assembly cells to the next level. This is realised by placing a larger number of cells, called Equiplets, in a “Grid”. Equiplets are compact and low-cost manufacturing platforms that can be reconfigured to a broad number of applications. Benchmarking Equiplet production has shown reduced time to market and a smooth transition from R&D to Manufacturing. When higher production volumes are needed, more systems can be placed in parallel to meet the manufacturing demand. Costs of product design changes in the later stage of industrialisation have been reduced due to the modular production in grids, which allows the final design freeze to be postponed as late as possible. The need for invested capital is also pushed backwards accordingly. doi 10.1007/978-3-642-11598-1_32
LINK
The main question that leads the focus in this study is: What is the contribution of the school environment to the resilience of middle-adolescent students? Before going into the background and rationale of this study I will specify the terms used in this research question: - Contribution: In this study I will use the dynamic term contribution instead of the term effect because I will not measure the causal influence in a statistical way but I will explore the relationship between school environment and middle-adolescents resilience in terms of dynamic, reciprocal interactions. - School environment: With the term school environment I refer to all possible aspects of the immediate environment constituted by the school as a system in which the middle-adolescent is interactively participating. These aspects can include teachers as well as the school building as well as the lunch breaks and extramural activities. No framed description of this term will be postulated beforehand because the school environment will be studied from the viewpoint of the middle-adolescents. It is the middle-adolescents description of the term school environment that is the focus of this study. - Resilience: Before constructing the term resilience in a detailed manner in Chapter Two I will use the term to denote the ability to bounce back after stressful experiences. - Middle-adolescent: a 14-or 15-year old girl or boy. I will elaborate on the reason for the focus on this age group in paragraph 2.1.
DOCUMENT
One of the major challenges for microsystem-based (MEMS -based) devices producing companies in general, and Bronkhorst High-Tech in particular, is to determine as early as possible in the production process which devices perform within specifications and if so by how much. Being able to separate the devices that do not comply as early as possible in the assembly flow would prevent spending time, money and materials on unsellable products. Being able to further separate good devices in multiple “performance bins” would bring even more cost and waste reduction by enabling Bronkhorst to pre-select finished products for different customer requirements. In this project we specifically focus on a micromachined flow sensor which is considered for a scale-up in production volumes in the near future. The ability to separate out badly performing devices translates to the challenge of finding a suitable test method, yielding the following research question: what are the success factors that would allow our MEMS partners to correlate product performance with measurements (tests) performed early in the production cycle? An answer makes it possible to implement the planned production scale-up of this MEMS device but also to reduce costs and waste typically associated with production failures. The device selected in this project is taken as an example for a broad range of chip-based MEMS devices with similar challenges. Therefore, we plan to use an applied research approach, looking at theoretical models of both device and production process, performing correlation measurements and delivering our recommendations on how to best tackle these production issues. It is our intention to thus generate expertise (knowledge & data) as well as a network on which we build a consortium around a future PPS (public-private partnership) where these challenges form a common theme.