Creating a mobile urban tourism storytelling application presents several interactivity challenges on how to convey an engaging multimedia experience on-site. This article describes a methodology for fast prototyping of a multimedia mobile applications dedicated to urban tourism storytelling. The application can be a game that takes advantage of several locationbased technologies, freely available geo-referenced media, and augmented reality for immersive gameplay. The goal is to create serious games for tourism that follow a main narrative but where the story can automatically adapt itself to the current location of the player, assimilate possible detours and allow posterior out-of-location playback. Adaptable stories can use dynamic information from map sources such as points of interest (POI), elevation or virtual buildings. The main focus is for these locationbased storytelling games to create more engagement between the tourists and the urban environment. To explore this concept, an application was designed for the city of Porto: Unlocking Porto. This location-based game with a central, yet adaptable, story engages the player into the main sights following an augmented reality path while playing small games. The article discusses and presents solutions for media acquisition, interactive storytelling, game-design interface and multi-disciplinary coordination for mobile app development.
Augmented reality (AR) has moved into the spotlight of technological developments to enhance tourist experiences, presenting a need to develop meaningful AR applications. However, few studies so far have focused on requirements for a user-centric AR application design. The study aims to propose a method on translating psychological and behavioral indicators of users into relevant technical design elements for the development of mobile AR tourism applications in the context of urban heritage tourism. The research was conducted in three phases to generate a quality function deployment (QFD) model based on interviews, focus groups and questionnaires of international tourists and industry professionals. Key categories, content requirements, function requirements, and user resistance were defined for the identification of requirements. The outcomes of the study outline tourist requirements based on behavioral and psychological indicators and propose a method for translating them into technical design elements for tourist mobile AR applications.
In a study commissioned by the Association of Dutch Municipalities (VNG), the applied research group European Impact has compiled the results from interviews executed by approximately 240 European Studies students at The Hague University of Applied Sciences. The purpose of this report is to compare and contrast the situation of intra-EU labor migrants (hereafter referred to as EU mobile citizens) in regard to registration, housing, and information flows in 12 different municipalities across the EU. Based on semi-structured interviews with municipal workers and individuals from employment agencies/companies from the selected municipalities, the picture that emerges is one of divergence. There are significant variations regarding the registration procedure and information flows for EU mobile citizens across the selected municipalities. For registration, differences include where the registration takes place, the amount of collaboration between municipalities and employment agencies/companies on registering EU mobile citizens, and the importance of addresses in the registration process. Regarding information flows across the selected municipalities, there are significant variations in the amount and type of information available to EU mobile citizens, the number of languages information is available in,as well as how the information is organized (i.e. in a centralized or decentralized way). Furthermore, while all the member states in which the selected municipalities are located provide information regarding registration on the Single Digital Gateway, not all provide information about renting housing. As for housing, the results revealed that most of the selected municipalities face issues with housing and that EU mobile citizens typically find housing either via their employers or personal network. Based on the results, a list of potential best practices and policy areas that could be improved was compiled. Furthermore, in order to have a stronger overview of policy developments in the field of EU mobile citizens among different municipalities, the VNG could consider hosting a Community of Practice with different municipalities across the EU as well as monitoring Interreg Europe projects focused on improving the situation of EU mobile citizens.
Drones have been verified as the camera of 2024 due to the enormous exponential growth in terms of the relevant technologies and applications such as smart agriculture, transportation, inspection, logistics, surveillance and interaction. Therefore, the commercial solutions to deploy drones in different working places have become a crucial demand for companies. Warehouses are one of the most promising industrial domains to utilize drones to automate different operations such as inventory scanning, goods transportation to the delivery lines, area monitoring on demand and so on. On the other hands, deploying drones (or even mobile robots) in such challenging environment needs to enable accurate state estimation in terms of position and orientation to allow autonomous navigation. This is because GPS signals are not available in warehouses due to the obstruction by the closed-sky areas and the signal deflection by structures. Vision-based positioning systems are the most promising techniques to achieve reliable position estimation in indoor environments. This is because of using low-cost sensors (cameras), the utilization of dense environmental features and the possibilities to operate in indoor/outdoor areas. Therefore, this proposal aims to address a crucial question for industrial applications with our industrial partners to explore limitations and develop solutions towards robust state estimation of drones in challenging environments such as warehouses and greenhouses. The results of this project will be used as the baseline to develop other navigation technologies towards full autonomous deployment of drones such as mapping, localization, docking and maneuvering to safely deploy drones in GPS-denied areas.
Today, embedded devices such as banking/transportation cards, car keys, and mobile phones use cryptographic techniques to protect personal information and communication. Such devices are increasingly becoming the targets of attacks trying to capture the underlying secret information, e.g., cryptographic keys. Attacks not targeting the cryptographic algorithm but its implementation are especially devastating and the best-known examples are so-called side-channel and fault injection attacks. Such attacks, often jointly coined as physical (implementation) attacks, are difficult to preclude and if the key (or other data) is recovered the device is useless. To mitigate such attacks, security evaluators use the same techniques as attackers and look for possible weaknesses in order to “fix” them before deployment. Unfortunately, the attackers’ resourcefulness on the one hand and usually a short amount of time the security evaluators have (and human errors factor) on the other hand, makes this not a fair race. Consequently, researchers are looking into possible ways of making security evaluations more reliable and faster. To that end, machine learning techniques showed to be a viable candidate although the challenge is far from solved. Our project aims at the development of automatic frameworks able to assess various potential side-channel and fault injection threats coming from diverse sources. Such systems will enable security evaluators, and above all companies producing chips for security applications, an option to find the potential weaknesses early and to assess the trade-off between making the product more secure versus making the product more implementation-friendly. To this end, we plan to use machine learning techniques coupled with novel techniques not explored before for side-channel and fault analysis. In addition, we will design new techniques specially tailored to improve the performance of this evaluation process. Our research fills the gap between what is known in academia on physical attacks and what is needed in the industry to prevent such attacks. In the end, once our frameworks become operational, they could be also a useful tool for mitigating other types of threats like ransomware or rootkits.
This project addresses the fundamental societal problem that encryption as a technique is available since decades, but has never been widely adopted, mostly because it is too difficult or cumbersome to use for the public at large. PGP illustrates this point well: it is difficult to set-up and use, mainly because of challenges in cryptographic key management. At the same time, the need for encryption has only been growing over the years, and has become an urgent problem with stringent requirements – for instance for electronic communication between doctors and patients – in the General Data Protection Regulation (GDPR) and with systematic mass surveillance activities of internationally operating intelligence agencies. The interdisciplinary project "Encryption for all" addresses this fundamental problem via a combination of cryptographic design and user experience design. On the cryptographic side it develops identity-based and attribute-based encryption on top of the attribute-based infrastructure provided by the existing IRMA-identity platform. Identity-based encryption (IBE) is a scientifically well-established technique, which addresses the key management problem in an elegant manner, but IBE has found limited application so far. In this project it will be developed to a practically usable level, exploiting the existing IRMA platform for identification and retrieval of private keys. Attribute-based encryption (ABE) has not reached the same level of maturity yet as IBE, and will be a topic of further research in this project, since it opens up attractive new applications: like a teacher encrypting for her students only, or a company encrypting for all employees with a certain role in the company. On the user experience design side, efforts will be focused on making these encryption techniques really usable (i.e., easy to use, effective, efficient, error resistant) for everyone (e.g., also for people with disabilities or limited digital skills). To do so, an iterative, human-centred and inclusive design approach will be adopted. On a fundamental level, scientific questions will be addressed, such as how to promote the use of security and privacy-enhancing technologies through design, and whether and how usability and accessibility affect the acceptance and use of encryption tools. Here, theories of nudging and boosting and the unified theory of technology acceptance and use (known as UTAUT) will serve as a theoretical basis. On a more applied level, standards like ISO 9241-11 on usability and ISO 9241-220 on the human-centred design process will serve as a guideline. Amongst others, interface designs will be developed and focus groups, participatory design sessions, expert reviews and usability evaluations with potential users of various ages and backgrounds will be conducted, in a user experience and observation laboratory available at HAN University of Applied Sciences. In addition to meeting usability goals, ensuring that the developed encryption techniques also meet national and international accessibility standards will be a particular point of focus. With respect to usability and accessibility, the project will build on the (limited) usability design experiences with the mobile IRMA application.