This study addresses the burgeoning global shortage of healthcare workers and the consequential overburdening of medical professionals, a challenge that is anticipated to intensify by 2030 [1]. It explores the adoption and perceptions of AI-powered mobile medical applications (MMAs) by physicians in the Netherlands, investigating whether doctors discuss or recommend these applications to patients and the frequency of their use in clinical practice. The research reveals a cautious but growing acceptance of MMAs among healthcare providers. Medical mobile applications, with a substantial part of IA-driven applications, are being recognized for their potential to alleviate workload. The findings suggest an emergent trust in AI-driven health technologies, underscored by recommendations from peers, yet tempered by concerns over data security and patient mental health, indicating a need for ongoing assessment and validation of these applications
DOCUMENT
For many EU citizens, working across the border is the only way to make a living in the EU. The battle for cheap labour has now become a well-oiled machine, in which almost all Western European countries participate. Nevertheless, the employment situation of EU Mobile Citizens, workers of low-skilled and -paid jobs, is often substandard. Challenges are housing, health care and working conditions. In addition, due to the lack of registration in municipalities, it is impossible to have an overview of the numbers and to offer effective help. This is a problem in small to medium-sized cities, where many workers live to work in agriculture, transport, construction, meat industry and logistics. For this study, 32 interviews were conducted in eleven small to medium-sized towns (SMSTs) in Sweden, Germany, the Netherlands, Ireland, Poland, and Spain. The study uses three different perspectives: EU representatives of participating regions, municipalities, and employers. The outcomes show that most SMSTs deal with a shortage of housing, and a lack of grip on the registration process of EU citizens. Although there are some success stories, most SMSTs are not in touch with each other to share these. The paper concludes with proposals for further action-research and collaborations to impact local policies.
DOCUMENT
In a study commissioned by the Association of Dutch Municipalities (VNG), the applied research group European Impact has compiled the results from interviews executed by approximately 240 European Studies students at The Hague University of Applied Sciences. The purpose of this report is to compare and contrast the situation of intra-EU labor migrants (hereafter referred to as EU mobile citizens) in regard to registration, housing, and information flows in 12 different municipalities across the EU. Based on semi-structured interviews with municipal workers and individuals from employment agencies/companies from the selected municipalities, the picture that emerges is one of divergence. There are significant variations regarding the registration procedure and information flows for EU mobile citizens across the selected municipalities. For registration, differences include where the registration takes place, the amount of collaboration between municipalities and employment agencies/companies on registering EU mobile citizens, and the importance of addresses in the registration process. Regarding information flows across the selected municipalities, there are significant variations in the amount and type of information available to EU mobile citizens, the number of languages information is available in,as well as how the information is organized (i.e. in a centralized or decentralized way). Furthermore, while all the member states in which the selected municipalities are located provide information regarding registration on the Single Digital Gateway, not all provide information about renting housing. As for housing, the results revealed that most of the selected municipalities face issues with housing and that EU mobile citizens typically find housing either via their employers or personal network. Based on the results, a list of potential best practices and policy areas that could be improved was compiled. Furthermore, in order to have a stronger overview of policy developments in the field of EU mobile citizens among different municipalities, the VNG could consider hosting a Community of Practice with different municipalities across the EU as well as monitoring Interreg Europe projects focused on improving the situation of EU mobile citizens.
DOCUMENT
Drones have been verified as the camera of 2024 due to the enormous exponential growth in terms of the relevant technologies and applications such as smart agriculture, transportation, inspection, logistics, surveillance and interaction. Therefore, the commercial solutions to deploy drones in different working places have become a crucial demand for companies. Warehouses are one of the most promising industrial domains to utilize drones to automate different operations such as inventory scanning, goods transportation to the delivery lines, area monitoring on demand and so on. On the other hands, deploying drones (or even mobile robots) in such challenging environment needs to enable accurate state estimation in terms of position and orientation to allow autonomous navigation. This is because GPS signals are not available in warehouses due to the obstruction by the closed-sky areas and the signal deflection by structures. Vision-based positioning systems are the most promising techniques to achieve reliable position estimation in indoor environments. This is because of using low-cost sensors (cameras), the utilization of dense environmental features and the possibilities to operate in indoor/outdoor areas. Therefore, this proposal aims to address a crucial question for industrial applications with our industrial partners to explore limitations and develop solutions towards robust state estimation of drones in challenging environments such as warehouses and greenhouses. The results of this project will be used as the baseline to develop other navigation technologies towards full autonomous deployment of drones such as mapping, localization, docking and maneuvering to safely deploy drones in GPS-denied areas.
Today, embedded devices such as banking/transportation cards, car keys, and mobile phones use cryptographic techniques to protect personal information and communication. Such devices are increasingly becoming the targets of attacks trying to capture the underlying secret information, e.g., cryptographic keys. Attacks not targeting the cryptographic algorithm but its implementation are especially devastating and the best-known examples are so-called side-channel and fault injection attacks. Such attacks, often jointly coined as physical (implementation) attacks, are difficult to preclude and if the key (or other data) is recovered the device is useless. To mitigate such attacks, security evaluators use the same techniques as attackers and look for possible weaknesses in order to “fix” them before deployment. Unfortunately, the attackers’ resourcefulness on the one hand and usually a short amount of time the security evaluators have (and human errors factor) on the other hand, makes this not a fair race. Consequently, researchers are looking into possible ways of making security evaluations more reliable and faster. To that end, machine learning techniques showed to be a viable candidate although the challenge is far from solved. Our project aims at the development of automatic frameworks able to assess various potential side-channel and fault injection threats coming from diverse sources. Such systems will enable security evaluators, and above all companies producing chips for security applications, an option to find the potential weaknesses early and to assess the trade-off between making the product more secure versus making the product more implementation-friendly. To this end, we plan to use machine learning techniques coupled with novel techniques not explored before for side-channel and fault analysis. In addition, we will design new techniques specially tailored to improve the performance of this evaluation process. Our research fills the gap between what is known in academia on physical attacks and what is needed in the industry to prevent such attacks. In the end, once our frameworks become operational, they could be also a useful tool for mitigating other types of threats like ransomware or rootkits.
Public safety is under enormous pressure. Demonstrations regularly result in riots and VIPs are often threatened even at their homes ! Criminal graffiti-gangs are threatening security professionals and costing the Dutch railways (NS), causing a loss of 10 M€ yearly. The safety incidents often escalate quickly, therefore, they require a very quick and correct scaling up of the security professionals. To do so, it is necessary for the security professionals to get very quick and accurate overview of the evolving situation using Mobile Drone intervention unit for quick response (Mobi Dick). The successfully completed project The Beast (9/11) has delivered a universal docking station with an automatic security drone. The drone takes off from a permanently installed docking station. Nest Fly emerged as a startup from this RAAK project, and it has already developed the prototype further to a first product. Based on extensive interaction with security professionals, it has been concluded that a permanently installed docking station is not suitable for all emergency cases. Therefore, a mobile, car-roof top mounted, docking station with a ready-for-take-off drone is required for the more severe and quickly escalating incidents. These situations require a drone taking off from the car-roof top mounted docking station while the vehicles continue to drive towards the incident. In this RAAK KIEM, a feasibility study will be executed by developing a car-roof top docking station. The concept will functionally be designed within the project (task 1). The two required subsystems car roof docking station (task 2) and dynamic take-off & landing (task 3) will technically be developed and integrated (task 4). The outcome of the experiments in this task will show the feasibly of the idea. Task 5 will ensure the results are disseminated in new cooperation’s, publications, and educational products.