Publinova logo

Search results

Products 111

product

Sustainable strategies for heritage; towards a holistic valuation framework

Cultural heritage buildings and sites are threatened by the effects of climate change, especially in coastal zones. Risks not only include floods and submersion, but also less visible risks such as effects of moisture levels or, alternatively, drought. At the same time, it is important to involve people in the care of heritage buildings and sites, to stimulate them to cherish, admire, and to enrich their lives with the heritage locations, buildings and stories.This paper aims to contribute to our knowledge on the application of valuation approaches. The topic of heritage and sustainability calls for an approach that encompasses a broad range of values. Theoretically, this paper relies on the approach of ‘Design for Values’. This approach starts with the identification of the values that are aspired to in a design project. These values are connected to norms, which describe how the identified value can be reached. On a more technical or concrete level, requirements are noted down, which specify the precise conditions a design must fulfill. In this way, a ‘value hierarchy’ can be outlined, which forms a guide for the designing process. In a value hierarchy, the levels are connected in two ways: downward by ‘specification’, and upwards, by the phrase ‘for the sake of’. After the design is finalized, a verification step is needed to ascertain if the aspired values indeed have been achieved in the design.The empirical case study for this paper is provided by the investigations of the Wisloujcsie Fortress and surrounding area at the SOS-workshop in Gdansk in October 2022. In our investigation of the site several problems and challenges came to light, which we summarized in a SWOT-analysis. For sustainable development of the area and the conservation of cultural and natural heritage we identified values connected to heritage, water, public access, and social values, see figure 1. In the paper, we will further elaborate on the norms and requirements that follow from each of these values. Also, we want to reflect on a preliminary verification step. We conclude that to produce designs that successfully achieve the climate and sustainability goals of the SOS-Climate Waterfront project, a ‘model valuation framework’ could be a useful guide for the design process. The first elements of such a framework are presented in our paper. Applying such a valuation framework stimulates ethical reflection during the design process and evaluation of the result. It thereby strengthens the connections between sustainability goals and urban design.

PDF

02/09/2023
Sustainable strategies for heritage; towards a holistic valuation framework
product

Effectiveness of water-saving techniques on growth performance of mango (Mangifera Indica L.) seedlings in Mihitsab-Azmati watershed, Rama Area, northern Ethiopia

Even though mango productivity in Ethiopia is low due to moisture stress, there is no report on how such constraint could alleviate using Cocoon water-saving technology. Cocoon is small water reservoir technology which uses for plant growth in dry season. The objectives of this study were to introduce and evaluate effectiveness of water-saving techniques on mango seedlings survival and growth in Mihitsab-Azmati watershed, northern Ethiopia. In this experiment, five treatments of water-saving techniques with mango seedlings were evaluated. These were: Cocoon sprayed by tricel (T1), Cocoon painted by used engine oil (T2), Cocoon without tricel and oil (T3), manually irrigated seedlings (T4) and mango seedlings planted during rainy season (T5). The survival and growth performance of mango seedlings were recorded at six months and one-year after transplanting. Data on plant survival, height, number of leaves per plant, shoot length, stem diameter and crown width were subjected to analysis of variance and t-test. There were significant differences in the treatment effects on mango seedlings transplanted survival, plant height, number of leaves per plant, shoot length, stem diameter and crown width measured at six months and one-year after transplanting. The lowest survival rate (20 %) was found during both data collection time in T5. Six months after transplanting, the highest growth parameters were measured from T1 whereas the lowest was from T5. However, one-year after transplanting, the highest growth parameters were measured from T3. Plant heights increments between the two measurement periods for T3, T2, T1, T4 and T5 were 45.1, 38.5, 24.8, 9.8 and 7.0 cm, respectively; indicating that T3 performed better than the other treatments. The t-test on mean differences between the same growth parameter measured at 12 and six months after transplanting also showed significant differences. The Cocoon water-saving technology was superior in improving mango seedlings survival and growth in the study area. This study generalized that Cocoon seems promising, sustainable and highly scalable with mango seedlings at large-scale in the study area conditions. However, this technology should not be assumed to perform uniformly well in all environmental conditions and with all tree species before demonstrated on a pilot study.

MULTIFILE

12/31/2020
Effectiveness of water-saving techniques on growth performance of mango (Mangifera Indica L.) seedlings in Mihitsab-Azmati watershed, Rama Area, northern Ethiopia
product

Extending grassland age for climate change mitigation and adaptation on clay soils

Permanent grassland soils can act as a sink for carbon and may therefore positively contribute to climate change mitigation and adaptation. We compared young (5–15 years since latest grassland renewal) with old (>20 years since latest grassland renewal) permanent grassland soils in terms of carbon stock, carbon sequestration, drought tolerance and flood resistance. The research was carried out on marine clay soil at 10 dairy farms with young and old permanent grassland. As hypothesized, the carbon stock was larger in old grassland (62 Mg C ha−1) topsoil (0–10 cm) than in young grassland topsoil (51 Mg C ha−1). The carbon sequestration rate was greater in young (on average 3.0 Mg C ha−1 year−1) compared with old grassland (1.6 Mg C ha−1 year−1) and determined by initial carbon stock. Regarding potential drought tolerance, we found larger soil moisture and soil organic matter (SOM) contents in old compared with young grassland topsoils. As hypothesized, the old grassland soils were more resistant to heavy rainfall as measured by water infiltration rate and macroporosity (at 20 cm depth) in comparison with the young grassland soils. In contrast to our hypothesis we did not find a difference in rooting between young and old permanent grassland, probably due to large variability in root biomass and root tip density. We conclude that old grasslands at dairy farms on clay soil can contribute more to the ecosystem services climate change mitigation and climate change adaptation than young grasslands. This study shows that under real farm conditions on a clay topsoil, carbon stock increases with grassland age and even after 30 years carbon saturation has not been reached. Further study is warranted to determine by how much extending grassland age can contribute to climate change mitigation and adaptation.

MULTIFILE

05/19/2021
Extending grassland age for climate change mitigation and adaptation on clay soils

Projects 8

project

Biobonding, improved biocomposites through fibre treatment

Recent research by the renowned Royal Institution of Chartered Surveyors (RICS) shows that more than 2/3 of all CO2 is emitted during the building process and less than 1/3 during use to heat the building and the tap water. Lightweight, local and biobased materials such as biocomposites to replace concrete and fossil based cladding are in the framework of climate change, a necessity for future building. Using plant fiber in polymer composites is especially interesting for construction since natural fibers exhibit comparative good mechanical properties with small specific weight, which defines the potential for lightweight constructions. The use of renewable resources, will affect the ecosystem favorably and the production costs of construction materials could also decrease. However, one disadvantage of natural fibers in plastics is their hydrophilic properties. In construction the materials need to meet special requirements like the resistance against fluctuating weather conditions (Ticoalu et al., 2010). In contrast to synthetic fibers, the natural ones are more moisture- and UV-radiation-sensitive. That may lead to degradation of these materials and a decreasing in quality of products. (Lopez et al., 2006; Mokhothu und John, 2017) Tanatex and NPSP have approached CoE BBE/Avans to assist in a study where fibres impregnated with the (modified) Tanatex products will be used for reinforcement of thermoset biopolymers. The influence of the different Tanatex products on the moisture absorption of natural/cellulosic fibers and the adhesion on the fibers on main composite matrix will be measured. The effect of Tantex products can optimize the bonding reaction between the resin and the fibers in the (bio) composite and result to improved strength and physico-chemical properties of the biocomposite materials. (word count: 270)

Finished
project

BouwTex: Gebouwtransformaties met textiel

In the past, textile material was used to add value to buildings in various applications, as well as improving building performance in terms or in terms of building and acoustics properties, and increasing the esthetic value.Textiles are light in weight, easy to shape, strong, insulating, moisture-regulating and can be provided with extra functions. Particularly in areas with an earthquake risk, as well as cases with a temporary demand for flexible shelters, textiles and primary use.

Finished
project

BUILDING LIGHT- LIGHT AND SUSTAINABLE BIOCOMPOSITES FOR CONSTRUCTION

Buildings are responsible for approximately 40% of energy consumption and 36% of carbon dioxide (CO2) emissions in the EU, and the largest energy consumer in Europe (https://ec.europa.eu/energy). Recent research shows that more than 2/3 of all CO2 is emitted during the building process whereas less than 1/3 is emitted during use. Cement is the source of about 8% of the world's CO2 emissions and innovation to create a distributive change in building practices is urgently needed, according to Chatham House report (Lehne et al 2018). Therefore new sustainable materials must be developed to replace concrete and fossil based building materials. Lightweight biobased biocomposites are good candidates for claddings and many other non-bearing building structures. Biocarbon, also commonly known as Biochar, is a high-carbon, fine-grained solid that is produced through pyrolysis processes and currently mainly used for energy. Recently biocarbon has also gained attention for its potential value with in industrial applications such as composites (Giorcellia et al, 2018; Piri et.al, 2018). Addition of biocarbon in the biocomposites is likely to increase the UV-resistance and fire resistance of the materials and decrease hydrophilic nature of composites. Using biocarbon in polymer composites is also interesting because of its relatively low specific weight that will result to lighter composite materials. In this Building Light project the SMEs Torrgas and NPSP will collaborate with and Avans/CoE BBE in a feasibility study on the use of biocarbon in a NPSP biocomposite. The physicochemical properties and moisture absorption of the composites with biocarbon filler will be compared to the biocomposite obtained with the currently used calcium carbonate filler. These novel biocarbon-biocomposites are anticipated to have higher stability and lighter weight, hence resulting to a new, exciting building materials that will create new business opportunities for both of the SME partners.

Finished