The full potential of predictive maintenance has not yet been utilised. Current solutions focus on individual steps of the predictive maintenance cycle and only work for very specific settings. The overarching challenge of predictive maintenance is to leverage these individual building blocks to obtain a framework that supports optimal maintenance and asset management. The PrimaVera project has identified four obstacles to tackle in order to utilise predictive maintenance at its full potential: lack of orchestration and automation of the predictive maintenance workflow, inaccurate or incomplete data and the role of human and organisational factors in data-driven decision support tools. Furthermore, an intuitive generic applicable predictive maintenance process model is presented in this paper to provide a structured way of deploying predictive maintenance solutions.
MULTIFILE
This research presents a case study exploring the potential for demand side flexibility at a cluster of university buildings. The study investigates the potential of a collection of various electrical devices, excluding heating and cooling systems. With increasing penetration of renewable electricity sources and the phasing out of dispatchable fossil sources, matching grid generation with grid demand will become difficult using traditional grid management methods alone. Additionally, grid congestion is a pressing problem. Demand side management in buildings may contribute to a solution to these problems. Currently demand response is, however, not yet exploited at scale. In part, this is because it is unclear how this flexibility can be translated into successful business models, or whether this is possible under the current market regime. This research gives insight into the potential value of energy demand flexibility in reducing energy costs and increasing the match between electricity demand and purchased renewable electricity. An inventory is made of on-site electrical devices that offer load flexibility and the magnitude and duration of load shifting is estimated for each group of devices. A demand response simulation model is then developed that represents the complete collection of flexible devices. This model, addresses demand response as a ‘distribute candy’ problem and finds the optimal time-of-use for shiftable electricity demand whilst respecting the flexibility constraints of the electrical devices. The value of demand flexibility at the building cluster is then assessed using this simulation model, measured electricity consumption, and data regarding the availability of purchased renewables and day-ahead spot prices. This research concludes that coordinated demand response of large variety of devices at the building cluster level can improve energy matching by 0.6-1.5% and reduce spot market energy cost by 0.4-3.2%.
Airport management is frequently faced with a problem of assigning flights to available stands and parking positions in the most economical way that would comply with airline policies and suffer minimum changes due to any operational disruptions. This work presents a novel approach to the most common airport problem – efficient stand assignment. The described algorithm combines benefits of data-mining and metaheuristic approaches and generates qualitative solutions, aware of delay trends and airport performance perturbations. The presented work provides promising solutions from the starting moments of computation, in addition, it delivers to the airport stakeholders delay-aware stand assignment, and facilitates the estimation of risk and consequences of any operational disruptions on the slot adherence.
MULTIFILE