An important contribution to the environmental impact of agro-food supply chains is related to the agricultural technology and practices used in the fields during raw material production. This problem can be framed from the point of view of the Focal Company (FC) as a raw material Green Supplier Selection Problem (GSSP). This paper describes an extension of the GSSP methodology that integrates life cycle assessment, environmental collaborations, and contract farming in order to gain social and environmental benefits. In this approach, risk and gains are shared by both parties, as well as information related to agricultural practices through which the FC can optimize global performance by deciding which suppliers to contract, capacity and which practices to use at each supplying field in order to optimize economic performance and environmental impact. The FC provides the knowledge and technology needed by the supplier to reach these objectives via a contract farming scheme. A case study is developed in order to illustrate and a step-by-step methodology is described. A multi-objective optimization strategy based on Genetic Algorithms linked to a MCDM approach to the solution selection step is proposed. Scenarios of optimization of the selection process are studied to demonstrate the potential improvement gains in performance.
DOCUMENT
This study presents a methodology designed to optimize various parameters of each access point within a Multiple-Input Single-Output (MISO) Visible Light Communication (VLC) system. The primary objective is to enhance both power and spectral efficiencies. A MISO-VLC model is presented based on experimental evaluations and a problem formulation considering intermodulation distortions based on Orthogonal Frequency Division Multiplexing modulation. A Hybrid Multi-Objective Optimization (HMO) approach is proposed, combining the Non-Sorting Genetic Algorithm III (NSGA-III) and the Multi-objective Grey Wolf Optimization (MOGWO). The proposed HMO's success was validated by a 66 % reduction in transmitted power, maintaining the Error Vector Magnitude (EVM) performance metrics even at lower power transmission levels and minimizing the guard band to its lower bound.
DOCUMENT
Electric vehicles and renewable energy sources are collectively being developed as a synergetic implementation for smart grids. In this context, smart charging of electric vehicles and vehicle-to-grid technologies are seen as a way forward to achieve economic, technical and environmental benefits. The implementation of these technologies requires the cooperation of the end-electricity user, the electric vehicle owner, the system operator and policy makers. These stakeholders pursue different and sometime conflicting objectives. In this paper, the concept of multi-objective-techno-economic-environmental optimisation is proposed for scheduling electric vehicle charging/discharging. End user energy cost, battery degradation, grid interaction and CO2 emissions in the home micro-grid context are modelled and concurrently optimised for the first time while providing frequency regulation. The results from three case studies show that the proposed method reduces the energy cost, battery degradation, CO2 emissions and grid utilisation by 88.2%, 67%, 34% and 90% respectively, when compared to uncontrolled electric vehicle charging. Furthermore, with multiple optimal solutions, in order to achieve a 41.8% improvement in grid utilisation, the system operator needs to compensate the end electricity user and the electric vehicle owner for their incurred benefit loss of 27.34% and 9.7% respectively, to stimulate participation in energy services.
DOCUMENT