Nature-based solutions (NBS) bieden veel kansen om de waterveiligheid te verhogen en tegelijkertijd natuurwaarden te versterken. In dit artikel worden zowel een aantal ecologische en juridische aspecten besproken als de consequenties van NBS in voorlanden tussen dijk en water, ten behoeve van het overstromingsrisicobeheer.
DOCUMENT
Stormwater runoff can contain high amounts of Potential Toxic Elements (PTE) as heavy metals. PTE can have negative and direct impact on the quality of surface waters and groundwater. The European Water Framework Directive (WFD) demands enhanced protection of the aquatic environment. As a consequence, the WFD requires municipalities and water authorities to address the emissions from drainage systems adequately and to take action when these emissions affect the quality of receiving waters together with mitigating the quantity challenges in a changing climate (floodings and drought). NBS is the most widely used method for storing stormwater and infiltrating in the Netherlands. However, there is still too little knowledge about the long-term functioning of the soil of these facilities. The research results are of great importance for all stakeholders in (inter)national cities that are involved in climate adaptation. Applying Nature-Based Solutions (NBS), Sustainable Urban Drainage Systems (SuDS) or Water Sensitive Urban Design (WSUD) are known to improve the water quality in the urban water cycle. The efficiency of NBS, such as the capability of bio swales to trap PTE, highly depends on the dimensions of the facility and on its implementation in the field [Woods Ballard, B et al, 2015]. For the determination of the removal efficiency of NBS information about stormwater quality and characteristics is essential. Acquiring the following information is strongly advised [Boogaard et al. 2014]:1. stormwater quality levels (method: stormwater quality database);2. location of NBS (method: mapping NBS in international database);3. behaviour of pollutants (method: cost effective mapping pollutants in the field). Stormwater quality contains pollutants as heavy metal in higher concentrations than water quality standards dictate. Over 500 locations with bio swales are mapped in the Netherlands which is a fraction of stormwater infiltration locations implemented in 20 years’ time. Monitoring of all these NBS would acquire high capacity and budget from the Dutch resources. This quick scan XRF mapping methodology of topsoil will indicate if the topsoil is polluted and whether the concentrations exceed national or international standards. This was only the case in one of the youngest pilots in Utrecht indicating that there are multiple factors other than age (traffic intensity, use of materials, storage volume, maintenance, run off quality, etc.). Several locations show unacceptable levels, above the national thresholds for pollutants where further research on the prediction of these levels in relation to multiple factors will be the subject of future research.The results of study are shared in 2 national workshops and valued as of great importance for all stakeholders in (inter)national cities that are involved in implementation of NBS for climate adaptation. The Dutch research results will be used to update (inter-)national guidelines for design, construction and maintenance of infiltration facilities this year. Stormwater managers are strongly advised to use this quick scan method within the first 10 years after implementation of swales to map possible pollution of the top soil and prevent pollution to spread to the groundwater in urban areas.
DOCUMENT
ClimateCafé is a field education concept involving dierent fields of science and practice for capacity building in climate change adaptation. This concept is applied on the eco-city of Augustenborg in Malmö, Sweden, where Nature-Based Solutions (NBS) were implemented in 1998.ClimateCafé Malmö evaluated these NBS with 20 young professionals from nine nationalities and seven disciplines with a variety of practical tools. In two days, 175 NBS were mapped and categorised in Malmö. Results show that the selected green infrastructure have a satisfactory infiltration capacity and low values of potential toxic element pollutants after 20 years in operation. The question “Is capacity building achieved by interdisciplinary field experience related to climate change adaptation?” was answered by interviews, collecting data of water quality, pollution, NBS and heat stress mapping, and measuring infiltration rates, followed by discussion. The interdisciplinary workshops with practical tools provide a tangible value to the participants and are needed to advance sustainabilityeorts. Long term lessons learnt from Augustenborg will help stormwater managers within planning of NBS. Lessons learned from this ClimateCafé will improve capacity building on climate change adaptation in the future. This paper oers a method and results to prove the German philosopher Friedrich Hegel wrong when he opined that “we learn from history that we do not learn from history”
DOCUMENT
Malmö is well known within the field of urban hydrology, as the city was a pioneer in integrated water management (Stahre 2008). In 1998 the Augustenborg neighbourhood was refurbished due to its reoccurring problems with flooding anddamage caused by water (Niemczynowicz 1999). The project “Ekostaden” (Eco-city) included many initiatives implementing nature-based solutions (NBS), such as swales and rain gardens for infiltrating surface (storm) water into the ground (Climate Adapt 2016) (Figure 1). International stakeholders want to know if these NBS still function satisfactorily after 20 years and what we can learn from the “Augustenborg strategy” and apply in other parts of the world. To quote the German philosopher Georg Wilhelm Friedrich Hegel, “we learn from history that we do not learn from history.” Augustenborg is an ideal location to demonstratethe sustainability of NBS, test the functionality for infiltration of surface water in swales, map the build-up of potential toxic elements (PTE), and test the water quality after 20 years operation. This evaluation is done in 2019 with theinternational, participatory and multidisciplinary method ‘ClimateCafé and the results are presented at the international seminar Cities, rain and risk,June 2019 in Malmö (Boogaard et al. 2019). ClimateCafé is a field education concept involving different fields of science and practice for capacity building in climate change adaptation. Over 20 ClimateCafés have already been carriedout around the globe (Africa, Asia, Europe), where different tools and methods have been demonstrated to evaluate climate adaptation. The 25th edition of ClimateCafé took place in Malmö, Sweden, in June 2019 and focussed on the Eco-city of Augustenborg. The main research question - “Are the NBS in Augustenborg still functioning satisfactorily?”- was answered by interviews, collecting data of water quality, pollution, NBS and heat stress mapping, and measuring infiltration rates (Boogaard et al. 2020).
DOCUMENT
Online knowledge-sharing platforms could potentially contribute to an accelerated climate adaptation by promoting more green and blue spaces in urban areas. The implementation of small-scale nature-based solutions (NBS) such as bio(swales), green roofs, and green walls requires the involvement and enthusiasm of multiple stakeholders. This paper discusses how online citizen science platforms can stimulate stakeholder engagement and promote NBS, which is illustrated with the case of ClimateScan. Three main concerns related to online platforms are addressed: the period of relevance of the platform, the lack of knowledge about the inclusiveness and characteristics of the contributors, and the ability of sustaining a well-functioning community with limited resources. ClimateScan has adopted a “bottom–up” approach in which users have much freedom to create and update content. Within six years, this has resulted in an illustrated map with over 5000 NBS projects around the globe and an average of more than 100 visitors a day. However, points of concern are identified regarding the data quality and the aspect of community-building. Although the numbers of users are rising, only a few users have remained involved. Learning from these remaining top users and their motivations, we draw general lessons and make suggestions for stimulating long-term engagement on online knowledge-sharing platforms
DOCUMENT
There is a clear demand for a collaborative knowledge-sharing on climate adaptation and mitigation. The aim of most climate adaptation platforms is (inter)national knowledge exchange and raising awareness about climate adaptation in urban areas and promote solutions such as Nature-based solutions (NBS) and floating infrastructure. However their multiple benefits are often unknown to the wider public. During seminars (February 2020) in Indonesia climate adaptation measures where mapped and the relevance of the climate adaption platforms such as ClimateScan was evaluated by the means of workshops and a survey. The platform ClimateScan holds now over 5000 locations in 5 main categories of climate adaptation (water, nature, agriculture, energy and people). The conclusions from the workshops in Semarang and Surabaya show high relevance scores for NBS: permeable pavement and swales; for infiltration of stormwater to groundwater; for mitigation of high temperatures with heat stress measures; and flood barriers to mitigate flooding. There were low scores for floating urbanization because this is not a culturally accepted practice in contradiction to other parts of the world. Indonesian floating infrastructure as a floating library, restaurant and airport terminal where mapped during workshops bringing the total of international floating structure locations to 150. The workshops have raised awareness among participants and contributed to capacity building by empowering the participants to map and review climate adaptation measures. A high majority see the value of climate adaptation platforms and will use it in the future.
MULTIFILE
Sustainable urban drainage systems (SuDS) or nature-based solutions (NBSs) are widely implemented to collect, store and infiltrate stormwater. The buildup of pollutants is expected in NBSs, and Dutch guidelines advise monitoring the topsoil of bio-swales every 5 years. In the Netherlands, almost every municipality has implemented bio-swales. Some municipalities have over 300 bio-swales, and monitoring all their NBSs is challenging due to cost and capacity. In this study, 20 locations where bio-swales with ages ranging between 10 and 20 years old were selected for a field investigation to answer the following question: is the soil quality of bio-swales after 10 years still acceptable? Portable XRF instruments were used to detect potential toxic elements (PTEs) for in situ measurements. The results showed that for copper (Cu), zinc (Zn) and lead (Pb), 30%, 40% and 25% of the locations show values above the threshold and 5%, 20% and 0% above the intervention threshold, meaning immediate action should be taken. The results are of importance for stakeholders in (inter)national cities that implement, maintain, and monitor NBS. Knowledge of stormwater and soil quality related to long-term health risks from NBS enables urban planners to implement the mostappropriate stormwater management strategies. With these research results, the Dutch guidelines for design, construction, and maintenance can be updated, and stakeholders are reminded that the monitoring of green infrastructure should be planned and executed every 5 years.
DOCUMENT
Cities are becoming increasingly vulnerable to climate change, and there is an urgent need to make them more resilient. The Climatescan adaptation tool www.climatescan.nl is applied as an interactive tool for knowledge exchange and raising awareness on Nature-Bases Solutions (NBS) targeting young professionals in ClimateCafes. Climatescan is a citizen science tool created through ‘learning by doing’, which is interactive, open source, and provide more detailed information on Best Management Practices (BMPs) as: exact location, website links, free photo and film material. BMPs related to Innovations for Climatic Events (INXCES) as stormwater infiltration by swales, raingardens, water squares, green roofs subsurface infiltration are mapped and published on social media. Climatescan is in continuous development as more data is uploaded by over 250 people around the world, and improvements are made to respond to feedback from users. In an early stage of the international knowledge exchange tool Climatescan, the tool was evaluated by semi-structured interviews in theClimatescan community with the following result: stakeholders demand tools that are interactive, open source, and provide more detailed information (location, free photo and film material). In 2016 Climatescan (first stage of INXCES) was turned into an APP and within two years the tool had over10,000 users and more than 3,000 international projects. More than 60% of the users are younger than 34 and 51% of users are female, resulting in engagement with an important target group: young professionals. The tool is applied in Climatecafe.nl around the world (The Netherlands, Sweden, Philippines, Indonesia, South Africa) where in a short period of time stakeholders in triple helix context (academia, public and private sector) work on climate related challenges and exchange their knowledge in a café setting. Climatescan has also been used in other water challenges with young professionals such as the Hanseatic Water City Challenge and Wetskills. During the INXCES project over 1000 BMPs related to Innovations for Climatic Events (INXCES) are mapped inall partner countries (figure 1). The points of interest vary from just a location with a short description to a full uploaded project with location, description and summary, photos and videos, presentations, links to websites with more information and scientific papers and books (as Bryggen in Norway: https://www.climatescan.nl/projects/16/detail ).
DOCUMENT
Stormwater runoff has severe negative and direct impact on the quality of surface waters and groundwater. The impact can cause chemical and heavy-metal pollution. Applying well established methods to map pollutants in urban areas and specifically in Nature-Based Solutions (NBS), such as Sustainable UrbanDrainage Systems (SuDS) is a step towards improving the water quality in the urban water cycle. Traditional mapping of pollutants by the means of soil samples is costly, which is the main reason why the environmental-technical functioning of rainwater facilities has not been investigated on a large scale andsystematically. X-ray fluorescence (XRF) is a known analysing method for finding metals and other components, for laboratory analysis and portable instruments. In this work we propose a new approach of mapping method for pollutants in-situ, such as heavy metals in soil in SuDS, with case studies from theNetherlands where swales were implemented 20 years ago. In situ XRF measurements is a quick and costefficient analysis for heavy meatal mapping in the respect to contaminated soil. In situ XRF measures of various elements, including heavy metals is carried out in a quickscan and accurate manner and measures both qualitatively and quantitatively. It makes the time-consuming and costly interim analyses by laboratories superfluous. In this study, we suggest a new methodology approach for in situ mapping of pollutants in various swales that were implemented from 20 to 5 years ago. The results differ due to multiple factors (age, use of materials, storage volume, maintenance, run off quality, etc.). Several locations reached unacceptable levels, above the national thresholds for pollutants. The spatial distribution of pollutants in the over 30 swales mapped in the Netherlands show that the preferred water flow in theSuDS controls the spreading of pollutants. The swales investigated are presented in an interactive way with the open source tool www.climatescan.nl, containing more than 100 swales, part of which has been investigated with in situ XRF measurements. The research results are of great importance for all stakeholders in (inter)national cities that are involved in climate adaptation. SuDS is the most widely used method for storing stormwater and infiltrating in the Netherlands. However, there is still too little knowledge about the long-term functioning of the soil of these facilities.
DOCUMENT
In de wijk Augustenborg in Malmö zijn sinds de jaren ’90 met de bewoners veel klimaatadaptie- en leefbaarheidselementen aangelegd. Maar functioneert de wijk nog naar tevredenheid en wat valt ervan te leren? In een ClimateCafé is (het functioneren van) klimaatadaptieve maatregelen vastgelegd en gepresenteerd op het eindcongres van vier internationale projecten.
MULTIFILE