Nature-based solutions (NBS) bieden veel kansen om de waterveiligheid te verhogen en tegelijkertijd natuurwaarden te versterken. In dit artikel worden zowel een aantal ecologische en juridische aspecten besproken als de consequenties van NBS in voorlanden tussen dijk en water, ten behoeve van het overstromingsrisicobeheer.
DOCUMENT
Stormwater runoff can contain high amounts of Potential Toxic Elements (PTE) as heavy metals. PTE can have negative and direct impact on the quality of surface waters and groundwater. The European Water Framework Directive (WFD) demands enhanced protection of the aquatic environment. As a consequence, the WFD requires municipalities and water authorities to address the emissions from drainage systems adequately and to take action when these emissions affect the quality of receiving waters together with mitigating the quantity challenges in a changing climate (floodings and drought). NBS is the most widely used method for storing stormwater and infiltrating in the Netherlands. However, there is still too little knowledge about the long-term functioning of the soil of these facilities. The research results are of great importance for all stakeholders in (inter)national cities that are involved in climate adaptation. Applying Nature-Based Solutions (NBS), Sustainable Urban Drainage Systems (SuDS) or Water Sensitive Urban Design (WSUD) are known to improve the water quality in the urban water cycle. The efficiency of NBS, such as the capability of bio swales to trap PTE, highly depends on the dimensions of the facility and on its implementation in the field [Woods Ballard, B et al, 2015]. For the determination of the removal efficiency of NBS information about stormwater quality and characteristics is essential. Acquiring the following information is strongly advised [Boogaard et al. 2014]:1. stormwater quality levels (method: stormwater quality database);2. location of NBS (method: mapping NBS in international database);3. behaviour of pollutants (method: cost effective mapping pollutants in the field). Stormwater quality contains pollutants as heavy metal in higher concentrations than water quality standards dictate. Over 500 locations with bio swales are mapped in the Netherlands which is a fraction of stormwater infiltration locations implemented in 20 years’ time. Monitoring of all these NBS would acquire high capacity and budget from the Dutch resources. This quick scan XRF mapping methodology of topsoil will indicate if the topsoil is polluted and whether the concentrations exceed national or international standards. This was only the case in one of the youngest pilots in Utrecht indicating that there are multiple factors other than age (traffic intensity, use of materials, storage volume, maintenance, run off quality, etc.). Several locations show unacceptable levels, above the national thresholds for pollutants where further research on the prediction of these levels in relation to multiple factors will be the subject of future research.The results of study are shared in 2 national workshops and valued as of great importance for all stakeholders in (inter)national cities that are involved in implementation of NBS for climate adaptation. The Dutch research results will be used to update (inter-)national guidelines for design, construction and maintenance of infiltration facilities this year. Stormwater managers are strongly advised to use this quick scan method within the first 10 years after implementation of swales to map possible pollution of the top soil and prevent pollution to spread to the groundwater in urban areas.
DOCUMENT
Many coastal communities worldwide are facing challenges caused by increasing sea levels. However, urban development, population growth and industrialisation in low-lying delta regions persist. This includes the Netherlands and British Columbia, Canada. Both regions explore new and innovative flood risk and adaptation strategies by initiating nature-based solutions (NBS) pilot projects and integrating research and community initiatives. The aim of this paper is to learn from the experiences with these NBS pilots and support practitioners with insights and knowledge about the prospectives and implementation process of NBS. Our study takes a bird's eye view by diving into four NBS case study projects that try to enhance flood defence and quality of life while considering ecosystems and community values simultaneously. To better understand current initiatives on NBS, we first describe the historical trajectories of flood risk management and climate adaptation policy in both countries. Then we analyse two urban and two suburban case studies to identify and compare enablers and barriers that surround the implementation of NBS. We use the Pilot Paradox as a framework to reflect on the enablers and barriers, and to formulate recommendations for barriers that are common ground. We found that upscaling of the pilots forms an important challenge in both countries. We also found that Canada is interested in exchanging technical knowledge, experiences, and insights with other countries through the involvement of international researchers, consultants, and students in projects. Such collaboration between countries, communities, practitioners, and academics could accelerate the development of innovative climate adaptation strategies worldwide.
LINK
''There is a clear demand for a collaborative knowledge-sharing on climate adaptation and mitigation. As a consequence of urban expansion, green spaces are lost and the available areas for pervious green areas are decreasing. Many cities will experience greater impacts from flooding and heatstress due to climate change. Blue-green and small scale Nature-based solutions (NBS) such as bio swales, raingardens and wetlands offer opportunities to adapt urban areas to the impacts of climate change, but their multiple benefits are often unknown to the wider public. Research suggests that effective management of mitigate flood events and heat stress will be achieved by applying a range of NBS measures at different locations in cities [Majidi et al 2019]. Mapping of these (potential) locations for NBS will raise awareness and contribute to capacity building on climate adaptation. Some open source Climate Change Adaptation Platforms (CCAPs) allow mapping of NBS by citizen science and can help to inform and inspire different stakeholders on the topic of climate adaptation in respective region. The aim of most CCAPs is to facilitate an open and free exchange of knowledge on an international scale. Raising awareness about climate adaptation in urban areas and promoting NBS are also key aims.''
DOCUMENT
ClimateCafé is a field education concept involving dierent fields of science and practice for capacity building in climate change adaptation. This concept is applied on the eco-city of Augustenborg in Malmö, Sweden, where Nature-Based Solutions (NBS) were implemented in 1998.ClimateCafé Malmö evaluated these NBS with 20 young professionals from nine nationalities and seven disciplines with a variety of practical tools. In two days, 175 NBS were mapped and categorised in Malmö. Results show that the selected green infrastructure have a satisfactory infiltration capacity and low values of potential toxic element pollutants after 20 years in operation. The question “Is capacity building achieved by interdisciplinary field experience related to climate change adaptation?” was answered by interviews, collecting data of water quality, pollution, NBS and heat stress mapping, and measuring infiltration rates, followed by discussion. The interdisciplinary workshops with practical tools provide a tangible value to the participants and are needed to advance sustainabilityeorts. Long term lessons learnt from Augustenborg will help stormwater managers within planning of NBS. Lessons learned from this ClimateCafé will improve capacity building on climate change adaptation in the future. This paper oers a method and results to prove the German philosopher Friedrich Hegel wrong when he opined that “we learn from history that we do not learn from history”
DOCUMENT
Verslag van de problematische begrafenis van een NSB-burgemeester in oorlogstijd.
DOCUMENT
Malmö is well known within the field of urban hydrology, as the city was a pioneer in integrated water management (Stahre 2008). In 1998 the Augustenborg neighbourhood was refurbished due to its reoccurring problems with flooding anddamage caused by water (Niemczynowicz 1999). The project “Ekostaden” (Eco-city) included many initiatives implementing nature-based solutions (NBS), such as swales and rain gardens for infiltrating surface (storm) water into the ground (Climate Adapt 2016) (Figure 1). International stakeholders want to know if these NBS still function satisfactorily after 20 years and what we can learn from the “Augustenborg strategy” and apply in other parts of the world. To quote the German philosopher Georg Wilhelm Friedrich Hegel, “we learn from history that we do not learn from history.” Augustenborg is an ideal location to demonstratethe sustainability of NBS, test the functionality for infiltration of surface water in swales, map the build-up of potential toxic elements (PTE), and test the water quality after 20 years operation. This evaluation is done in 2019 with theinternational, participatory and multidisciplinary method ‘ClimateCafé and the results are presented at the international seminar Cities, rain and risk,June 2019 in Malmö (Boogaard et al. 2019). ClimateCafé is a field education concept involving different fields of science and practice for capacity building in climate change adaptation. Over 20 ClimateCafés have already been carriedout around the globe (Africa, Asia, Europe), where different tools and methods have been demonstrated to evaluate climate adaptation. The 25th edition of ClimateCafé took place in Malmö, Sweden, in June 2019 and focussed on the Eco-city of Augustenborg. The main research question - “Are the NBS in Augustenborg still functioning satisfactorily?”- was answered by interviews, collecting data of water quality, pollution, NBS and heat stress mapping, and measuring infiltration rates (Boogaard et al. 2020).
DOCUMENT
As a consequence of climate change and urbanization, many cities will have to deal with more flooding and extreme heat stress. This paper presents a framework to maximize the effectiveness of Nature-Based Solutions (NBS) for flood risk reduction and thermal comfort enhancement. The framework involves an assessment of hazards with the use of models and field measurements. It also detects suitable implementation sites for NBS and quantifies their effectiveness for thermal comfort enhancement and flood risk reduction. The framework was applied in a densely urbanized study area, for which different small-scale urban NBS and their potential locations for implementation were assessed. The overall results show that the most effective performance in terms of flood mitigation and thermal comfort enhancement is likely achieved by applying a range of different measures at different locations. Therefore, the work presented here shows the potential of the framework to achieve an effective combination of measures and their locations, which was demonstrated on the case of the Sukhumvit area in Bangkok (Thailand). This can be particularly suitable for assessing and planning flood mitigation measures in combination with heat stress reduction.
DOCUMENT
Article only: CC-BY licence. As a consequence of climate change and urbanization, many cities will have to deal with more flooding and extreme heat stress. This paper presents a framework to maximize the effectiveness of Nature-Based Solutions (NBS) for flood risk reduction and thermal comfort enhancement. The framework involves an assessment of hazards with the use of models and field measurements. It also detects suitable implementation sites for NBS and quantifies theireffectiveness for thermal comfort enhancement and flood risk reduction. The framework was applied in a densely urbanized study area, for which different small-scale urban NBS and their potential locations for implementation were assessed. The overall results show that the most effective performance in terms of flood mitigation and thermal comfort enhancement is likely achieved by applying a range of different measures at different locations. Therefore, the workpresented here shows the potential of the framework to achieve an effective combination of measures and their locations, which was demonstrated on the case of the Sukhumvit area in Bangkok (Thailand). This can be particularly suitable for assessing and planning flood mitigation measures in combination with heat stress reduction.
DOCUMENT
As a consequence of climate change and urbanization, many cities will have to deal with more flooding and extreme heat stress. This paper presents a framework to maximize the effectiveness of Nature-Based Solutions (NBS) for flood risk reduction and thermal comfort enhancement. The framework involves an assessment of hazards with the use of models and field measurements. It also detects suitable implementation sites for NBS and quantifies their effectiveness for thermal comfort enhancement and flood risk reduction. The framework was applied in a densely urbanized study area, for which different small-scale urban NBS and their potential locations for implementation were assessed. The overall results show that the most effective performance in terms of flood mitigation and thermal comfort enhancement is likely achieved by applying a range of different measures at different locations. Therefore, the work presented here shows the potential of the framework to achieve an effective combination of measures and their locations, which was demonstrated on the case of the Sukhumvit area in Bangkok (Thailand). This can be particularly suitable for assessing and planning flood mitigation measures in combination with heat stress reduction.
DOCUMENT