Over the past decade, journalists have created in-depth interactive narratives to provide an alternative to the relentless 24-hour news cycle. Combining different media forms, such as text, audio, video, and data visualisation with the interactive possibilities of digital media, these narratives involve users in the narrative in new ways. In journalism studies, the convergence of different media forms in this manner has gained significant attention. However, interactivity as part of this form has been left underappreciated. In this study, we scrutinise how navigational structure, expressed as navigational cues, shapes user agency in their individual explorations of the narrative. By approaching interactive narratives as story spaces with unique interactive architectures, in this article, we reconstruct the architecture of five Dutch interactive narratives using the walkthrough method. We find that the extensiveness of the interactive architectures can be described on a continuum between closed and open navigational structures that predetermine and thus shape users’ trajectories in diverse ways.
Traditional turn-by-turn navigation approaches often do not provide sufficiently detailed information to help people with a visual impairment (PVI) to successfully navigate through an urban environment. To provide PVI with clear and supportive navigation information we created Sidewalk, a new wayfinding message syntax for mobile applications. Sidewalk proposes a consistent structure for detailed wayfinding instructions, short instructions and alerts. We tested Sidewalk with six PVI in the urban center of Amsterdam, the Netherlands. Results show that our approach to wayfinding was positively valued by the participants.
This work describes the design, implementation and validation of an autonomous gas leakage inspection robot. Navigation with centimeter level accuracy is achieved using RTK GNSS integrated using the ROS 2 and Nav2 frameworks. The proposed solution has been validated successfully in terms of navigation accuracy and gas detection capabilities. The approach has the potential to effectively address the increasing demand for inspections of the grid.
MULTIFILE
In onze visie voeren robots autonoom taken uit op de akker. Ze kunnen zaaien, oogsten, onkruid verwijderen, gewassen monitoren en verzorgen. Hierdoor zijn agrariërs minder kostbare tijd kwijt aan basistaken. Ook zijn er met dit soort robots geen (of veel minder) bestrijdingsmiddelen nodig en rijden er geen zware machines meer op het land. Dit leidt tot minder bodemverdichting en daardoor hoeft het land niet (of minder diep) te worden omgeploegd. Naast een enorme besparing op brandstof leidt dit ook tot een betere bodemkwaliteit en worden nieuwe teelten mogelijk. Agrarische robots zijn volop in ontwikkeling. Er zijn echter nog een aantal uitdagingen die opgelost moeten worden. Eén van die uitdagingen is volledig autonome, robuuste en veilige navigatie. De robot moet kunnen rijden zonder een bestuurder. Het AgriNav project: Agricultural Navigation In dit project werkt Saxion samen met drie pioniers op het gebied van agrarische robots in Nederland. Het doel is om een gedegen beeld van oplossingen voor het navigatieprobleem te ontwikkelen. We brengen daarvoor in kaart welke producten en frameworks er zijn en in hoeverre deze direct te gebruiken zijn. Op basis van de bevindingen maken we een afweging of de navigatie oplossing wordt ingekocht of dat deze zelf wordt ontwikkeld, bijvoorbeeld op basis van bestaande open source projecten. Onderdeel van dit KIEM project is het starten van vervolgtrajecten, zoals RAAK-mkb of RAAK-PRO. Impact Het project “AgriNav” geeft de inzet van kleine autonome zelfrijdende robots in de agrarische sector een boost, waardoor er nieuwe en duurzamere landbouw kan ontstaan. Dit past bij de ambitie van Nederland om voorop te lopen op het gebied van technologie voor voedselproductie. Door het project wordt de kennispositie van het consortium versterkt in zowel de topsector HTSM als AgriFood en de NWA routes “Duurzame productie van gezond en veilig voedsel” en “smart industrie”.
Om onze groeiende wereldbevolking op een duurzame manier te kunnen voeden moeten we op zoek naar toekomstbestendige vormen van voedselproductie. We streven naar een akker- en tuinbouw waarbij minder verloren gaat, natuurlijke hulpbronnen worden gespaard en bodemecologie en biodiversiteit worden versterkt. Waar conventionele akkerbouw leunt op de inzet van grote zware machines, chemische bestrijdingsmiddelen en kunstmest, richten we ons in dit onderzoek op de inzet van lichtere en kleinere agrarische robots. Hierdoor ontstaan nieuwe manieren van telen en rijden er geen zware machines meer op het land. Als gevolg hiervan vind er minder bodemverdichting plaatst en hoeft het land niet te worden omgeploegd. In Nederland worden op dit moment een aantal agrarische robots ontwikkeld. Dit zijn inherent complexe systemen en er zijn nog een aantal uitdagingen die moeten worden opgelost voordat deze robots het veld op kunnen. Wij richten ons in dit project op de software die nodig is om de robot autonoom, oftewel zelfstandig, te kunnen laten rijden. We willen een beproefd framework aanvullen en toepassen, zodat deze op agrarische robots gebruikt kan worden. In dit project werkt Saxion samen met zes pioniers op het gebied van agrarische robots in Nederland. In een voorgaand project zijn oplossingsrichtingen verkend en in dit project worden de ontbrekende schakels ontwikkeld. Voor de navigatie gebruiken we Robot Operating System (ROS), het framework dat wereldwijd door grote robotbouwers wordt gebruikt: In dit project modelleren en simuleren we de robots. Ontbrekende onderdelen worden ontwikkeld, samengesteld of geconfigureerd. Tenslotte wordt de software op de fysieke robots getest. De ontwikkelde software wordt al gedurende de ontwikkeling als open source project publiek beschikbaar gesteld. Met de resultaten van het onderzoek kan de time-to-market voor nieuwe agrarische robots drastisch worden verlaagd.
Hoewel drones worden gebruikt in steeds toenemende civiele toepassingen voor een goede daad, zijn kwaadwillende drones ook steeds meer en steeds vaker worden ingezet om schade aan te richten. Huis, tuin en keukendrones zijn in staat om door te dringen tot zwaarbeveiligde gebieden en daar verwoestende schade aan te brengen. Ze zijn goedkoop, precies en kunnen steeds grotere afstanden afleggen. Kwaadwillende drones vormen een groot gevaar voor de nationale veiligheid. In dit KIEM-project onderzoeken wij de vraag in hoeverre is het mogelijk om drones te ontwikkelen die volledig autonoom een ongecontroleerde omgeving (luchtruim) veilig kunnen houden? Counter drones moeten kamikaze-drones kunnen signaleren en uitschakelen. Bestaande systemen zijn nog onvoldoende in staat om kwaadwillende drones op tijd uit te schakelen. Bij Defensie, de Nationale Politie en het gevangeniswezen is dringend behoefte aan systemen die kwaadwillende drones kunnen detecteren en uitschakelen. Er zijn thans enkele (Europese) systemen waarmee drones kunnen worden gedetecteerd, onder andere met radiofrequentiesignalen (voelen), optische- en radartechnologie (zien) en akoestische systemen (horen). Geen van deze systemen vormen de ‘silver bullet’ voor het bestrijden van kwaadwillende drones, vooral kleine en laagvliegende drones. Met een feasibility study wordt nagegaan wat de state-of-the-art is van de huidige counter dronetechnologieën en op welke technologiedomeinen het consortium waarde kan toevoegen aan de ontwikkeling van effectieve counter drones. Saxion en haar partners zet zich de komende jaren in op Sleuteltechnologieën als: Human Robotic Interaction, Perception, Navigation, Systems Development, Mechatronics en Cognition. Technologieën die terugkomen in counter drones, maar ook worden doorontwikkeld voor andere toepassingsgebieden. Het project bestaat uit 4 fasen: een onderzoek naar de huidige counter dronetechnologieën (IST), onderzoek naar gewenste/toekomstige counter dronetechnologieën (SOLL), een gap-analyse (TOR) én een omgevingsanalyse om na te gaan wat er elders in Europa al aan onderzoek plaatsvindt. Tevens wordt een netwerk ontwikkeld om counter droneontwikkeling mogelijk te maken.