Many studies have shown that experts possess better perceptual-cognitive skills than novices (e.g., in anticipation, decision making, pattern recall), but it remains unclear whether a relationship exists between performance on those tests of perceptual-cognitive skill and actual on-field performance. In this study, we assessed the in situ performance of skilled soccer players and related the outcomes to measures of anticipation, decision making, and pattern recall. In addition, we examined gaze behaviour when performing the perceptual-cognitive tests to better understand whether the underlying processes were related when those perceptual-cognitive tasks were performed. The results revealed that on-field performance could not be predicted on the basis of performance on the perceptual-cognitive tests. Moreover, there were no strong correlations between the level of performance on the different tests. The analysis of gaze behaviour revealed differences in search rate, fixation duration, fixation order, gaze entropy, and percentage viewing time when performing the test of pattern recall, suggesting that it is driven by different processes to those used for anticipation and decision making. Altogether, the results suggest that the perceptual-cognitive tests may not be as strong determinants of actual performance as may have previously been assumed.
Game development businesses often choose Lua for separating scripted game logic from reusable engine code. Lua can easily be embedded, has simple interfaces, and offers a powerful and extensible scripting language. Using Lua, developers can create prototypes and scripts at early development stages. However, when larger quantities of engine code and script are available, developers encounter maintainability and quality problems. First, the available automated solutions for interoperability do not take domain-specific optimizations into account. Maintaining a coupling by hand between the Lua interpreter and the engine code, usually in C++, is labour intensive and error-prone. Second, assessing the quality of Lua scripts is hard due to a lack of tools that support static analysis. Lua scripts for dynamic analysis only report warnings and errors at run-time and are limited to code coverage. A common solution to the first problem is developing an Interface Definition Language (IDL) from which ”glue code”, interoperability code between interfaces, is generated automatically. We address quality problems by proposing a method to complement techniques for Lua analysis. We introduce Lua AiR (Lua Analysis in Rascal), a framework for static analysis of Lua script in its embedded context, using IDL models and Rascal.
De meest gebruikte opbouw in business intelligence, predictive analitics en analytics modellen is de moeilijkheidsgraad: 1) descriptive, 2) diagnostic, 3) predictive en 4) prescriptive. Deze schaal vertelt iets over de volwassenheid van het gebruik van data door de organisatie. Een model dat niet op zichzelf staat en een achterliggende methode kent is de data driehoek van EDM (Figuur 1), welke in dit artikel zal worden toegelicht.
LINK