Crime script analysis as a methodology to analyse criminal processes is underdeveloped. This is apparent from the various approaches in which scholars apply crime scripting and present their cybercrime scripts. The plethora of scripting methods raise significant concerns about the reliability and validity of these scripting studies. In this methodological paper, we demonstrate how object-oriented modelling (OOM) could address some of the currently identified methodological issues, thereby refining crime script analysis. More specifically, we suggest to visualise crime scripts using static and dynamic modelling with the Unified Modelling Language (UML) to harmonise cybercrime scripts without compromising their depth. Static models visualise objects in a system or process, their attributes and their relationships. Dynamic models visualise actions and interactions during a process. Creating these models in addition to the typical textual narrative could aid analysts to more systematically consider, organise and relate key aspects of crime scripts. In turn, this approach might, amongst others, facilitate alternative ways of identifying intervention measures, theorising about offender decision-making, and an improved shared understanding of the crime phenomenon analysed. We illustrate the application of these models with a phishing script.
MULTIFILE
Accurate modeling of end-users’ decision-making behavior is crucial for validating demand response (DR) policies. However, existing models usually represent the decision-making behavior as an optimization problem, neglecting the impact of human psychology on decisions. In this paper, we propose a Belief-Desire-Intention (BDI) agent model to model end-users’ decision-making under DR. This model has the ability to perceive environmental information, generate different power scheduling plans, and make decisions that align with its own interests. The key modeling capabilities of the proposed model have been validated in a household end-user with flexible loads
DOCUMENT
The Maritime Spatial Planning (MSP) Challenge simulation platform helps planners and stakeholders understand and manage the complexity of MSP. In the interactive simulation, different data layers covering an entire sea region can be viewed to make an assessment of the current status. Users can create scenarios for future uses of the marine space over a period of several decades. Changes in energy infrastructure, shipping, and the marine environment are then simulated, and the effects are visualized using indicators and heat maps. The platform is built with advanced game technology and uses aspects of role-play to create interactive sessions; it can thus be referred to as serious gaming. To calculate and visualize the effects of planning decisions on the marine ecology, we integrated the Ecopath with Ecosim (EwE) food web modeling approach into the platform. We demonstrate how EwE was connected to MSP, considering the range of constraints imposed by running scientific software in interactive serious gaming sessions while still providing cascading ecological feedback in response to planning actions. We explored the connection by adapting two published ecological models for use in MSP sessions. We conclude with lessons learned and identify future developments of the simulation platform.
MULTIFILE