Global climate change (CC) affects marine mammals, such as cetaceans, by exposing them to an altered marine environment. Cetaceans are indirectly influenced by CC (e.g. through their prey, warmer environment). They are indicator species, significant to marine ecosystems and one of the most endangered vertebrate groups on this planet. Since oceanic water temperatures have increased, a noticeable shift in diversity of cetaceans present in marine hotspots is expected. In this paper, the community structure (occurrence) of cetacean species present around São Miguel Island, Portugal were investigated to contribute to the current understanding of the effects of CC on cetaceans.
MULTIFILE
Background Several footwear design characteristics are known to have detrimental effects on the foot. However, one characteristic that has received relatively little attention is the point where the sole flexes in the sagittal plane. Several footwear assessment forms assume that this should ideally be located directly under the metarsophalangeal joints (MTPJs), but this has not been directly evaluated. The aim of this study was therefore to assess the influence on plantar loading of different locations of the shoe sole flexion point. Method Twenty-one asymptomatic females with normal foot posture participated. Standardised shoes were incised directly underneath the metatarsophalangeal joints, proximal to the MTPJs or underneath the midfoot. The participants walked in a randomised sequence of the three shoes whilst plantar loading patterns were obtained using the Pedar® in-shoe pressure measurement system. The foot was divided into nine anatomically important masks, and peak pressure (PP), contact time (CT) and pressure time integral (PTI) were determined. A ratio of PP and PTI between MTPJ2-3/MTPJ1 was also calculated. Results Wearing the shoe with the sole flexion point located proximal to the MTPJs resulted in increased PP under MTPJ 4–5 (6.2%) and decreased PP under the medial midfoot compared to the sub-MTPJ flexion point (−8.4%). Wearing the shoe with the sole flexion point located under the midfoot resulted in decreased PP, CT and PTI in the medial and lateral hindfoot (PP: −4.2% and −5.1%, CT: −3.4% and −6.6%, PTI: −6.9% and −5.7%) and medial midfoot (PP: −5.9% CT: −2.9% PTI: −12.2%) compared to the other two shoes. Conclusion The findings of this study indicate that the location of the sole flexion point of the shoe influences plantar loading patterns during gait. Specifically, shoes with a sole flexion point located under the midfoot significantly decrease the magnitude and duration of loading under the midfoot and hindfoot, which may be indicative of an earlier heel lift.
LINK
Studies monitoring vitamin D status in athletes are seldom conducted for a period of 12 months or longer, thereby lacking insight into seasonal fluctuations. The objective of the cur-rent study was to identify seasonal changes in total 25-hydroxyvitamin D (25(OH)D) concen-tration throughout the year. Fifty-two, mainly Caucasian athletes with a sufficient 25(OH)D concentration (>75 nmol/L) in June were included in this study. Serum 25(OH)D concentra-tion was measured every three months (June, September, December, March, June). Addition-ally, vitamin D intake and sun exposure were assessed by questionnaires at the same time points. Highest total 25(OH)D concentrations were found at the end of summer (113±26 nmol/L), whereas lowest concentrations were observed at the end of winter (78±30 nmol/L). Although all athletes had a sufficient 25(OH)D concentration at the start of the study, nearly 20% of the athletes were deficient (<50 nmol/L) in late winter.