This paper investigates smart charging strategies for battery-electric construction machinery (non-road mobile machinery, NRMM) through a case study of a large-scale housing project in The Hague, Netherlands. The study develops a methodology to estimate energy demands and simulate charging profiles during various construction phases. Using a combination of smart charging and temporary battery storage, the paper demonstrates that peak grid loads can be significantly reduced—by up to 46%—compared to conventional charging strategies. Simulations reveal that grid limitations, especially during early construction phases, can be overcome with optimized load management and supplemental battery systems. The findings highlight the importance of smart charging infrastructure and energy planning in enabling the transition to zero-emission construction practices. This research contributes to the practical implementation of electric NRMM in urban construction projects, addressing one of the key bottlenecks in decarbonizing the construction sector.
DOCUMENT
The increased adoption of electric vehicles worldwide is largely caused by the uptake of private electric cars. In parallel other segments such as busses, city logistics and taxis, are increasingly becoming electrified. Amsterdam is an interesting case, as the municipality and the taxi sector have signed a voluntary agreement to realise a full electric taxi fleet by 2025. This paper investigates the results of a survey that was distributed amongst 3000 taxi drivers to examine perceptions and attitudes on the municipal charging incentives as well as taxi ride characteristics.
MULTIFILE
The demand for the transport of goods within the city is rising and with that the number of vans driving around. This has adverse effects on air quality, noise, safety and liveability in the city. LEFVs (Light Electric Freight Vehicles) offer a potential solution for this. There is already a lot of enthusiasm for the LEFVs and several companies have started offering the vehicles. Still many companies are hesitating to start and experience. New knowledge is needed of logistics concepts for the application of LEFVs. This paper shows the outcomes of eight case studies about what is needed to successfully deploy LEFVs for city logistics.
DOCUMENT