ABSTRACT Objective: To evaluate the effectiveness of the WhiteTeeth mobile app, a theory-based mobile health (mHealth) program for promoting oral hygiene in adolescent orthodontic patients. Methods: In this parallel randomized controlled trial, the data of 132 adolescents were collected during three orthodontic check-ups: at baseline (T0), at 6-week follow-up (T1), and at 12-week follow-up (T2). The intervention group was given access to the WhiteTeeth app in addition to usual care (n=67). The control group received usual care only (n=65). The oral hygiene outcomes were the presence and the amount of dental plaque (Al-Anezi and Harradine plaque Index); and the total number of sites with gingival bleeding (Bleeding on Marginal Probing Index). Oral health behavior and its psychosocial factors were measured through a digital questionnaire. We performed linear mixed model analyses to determine the intervention effects. Results: At 6-week follow-up, the intervention led to a significant decrease in gingival bleeding (B=-3.74; 95%CI -6.84 to -0.65), and an increase in the use of fluoride mouth rinse (B=1.93; 95%CI 0.36 to 3.50). At 12-week follow-up, dental plaque accumulation (B=-11.32; 95%CI -20.57 to -2.07) and the number of sites covered. Conclusions: The results show that adolescents with fixed orthodontic appliances can be helped to improve their oral hygiene when usual care is combined with a mobile app that provides oral health education and automatic coaching. Netherlands Trial Registry Identifier: NTR6206: 20 February 2017.
LINK
OBJECTIVES: To make practical recommendations for improving oral hygiene behavior (OHB) potential predictors based on the Theory of Planned Behavior (TPB) were assessed. Measurements of oral health knowledge (OHK) and the expected social effect for having healthy teeth were included.METHODS: 216 recruits in the Dutch Army ground forces completed a questionnaire about oral hygiene behavior, attitudes, social norms, perceived behavioral control (PBC), intention to perform optimal OHB, OHK, and expected social outcomes.RESULTS: The multivariate regression analysis revealed that attitude and PBC explained 37.2% of the variance in intention to perform optimal oral hygiene behavior, which is a substantial proportion. Furthermore, actual oral hygiene behavior was only predicted by attitude, explaining 7.1% of the variance.CONCLUSION: The present findings suggest that recruits' oral hygiene behavior may be improved by promoting a more positive attitude and especially by enhancing perceived behavior control.
Abstract Objective: To determine the associations between four validated multidimensional self-report frailty scales and nine indices of oral health in communitydwelling older persons. Materials and Methods: This pilot study was conducted in a sample of 208 older persons aged 70 years and older who visited two dental practices in the Netherlands. Frailty status was measured by four different self-report frailty questionnaires: Tilburg Frailty Indicator (TFI), Groningen Frailty Indicator (GFI), Sunfrail Checklist (SC), and the Sherbrooke Postal Questionnaire (SPQ). Oral health was assessed by two calibrated examiners. Results: The prevalence of frailty according to the four frailty measures TFI, GFI, SC, and SPQ was 32.8%, 31.5%, 24.5%, and 49.7%, respectively. The SC correlated with four oral health variables (DMFT, number of teeth, percentage of occlusal contacts, Plaque Index), the TFI with three (number of teeth, percentage of occlusal contacts, Plaque Index), the GFI only with DPSI, and the SPQ with the number of teeth and the number of occlusal contacts. Conclusion: Of the studiedmultidimensional frailty scales, the SC and TFIwere correlated with most oral health variables (four and three, respectively). However, it should be noticed that these correlations were small. Clinical relevance: The SCand TFImight help to identify older people with risk of poor oral health so that preventive care can be used to ensure deterioration of oral health and maintenance of quality of life. Vice versa early detection of frailty by oral care professionals could contribute to interprofessional management of frailty.
Our world is changing rapidly as a result of societal and technological developments that create new opportunities and challenges. Extended Realities (XR) could provide solutions for the problems the world is facing. In this project we apply these novel solutions in food and hospitality. It aims to tackle fundamental questions on how to stimulate a healthy and vital society that is based on a sustainable and innovative economy. This project aims to answer the question: How can Extended Reality (XR) technologies be integrated in the design of immersive food experiences to stimulate sustainable consumption behavior? A multidisciplinary approach, that has demonstrated its strength in the creative industry, will be applied in the hospitality and food sector. The project investigates implications and design considerations for immersion through XR technology that can stimulate sustainable consumption behavior. Based on XR prototypes, physiological data will be collected using biometric measuring devices in combination with self-reports. The effect of stimuli on sustainable consumption behavior during the immersive experience will be tested to introduce XR implementations that can motivate long-term behavioral change in food consumption. The results of the project contribute towards developing innovations in the hospitality sector that can tackle global societal challenges by exploiting the impact of new technology and understanding of consumer behavior to promote a healthy lifestyle and economy. Next to academic publications and conference contributions, the project will develop a handbook for hospitality professionals. It will outline steps and design criteria for the implementation of XR technologies to create immersive experiences that can stimulate sustainable consumption behavior. The knowledge generated in the project will contribute to the development of the curriculum at the Academy for Hotel and Facility at Breda University of Applied Sciences by introducing a technology-driven experience design approach for the course Sustainable Strategic Business Design.
Lack of physical activity in urban contexts is an increasing health risk in The Netherlands and Brazil. Exercise applications (apps) are seen as potential ways of increasing physical activity. However, physical activity apps in app stores commonly lack a scientific base. Consequently, it remains unknown what specific content messages should contain and how messages can be personalized to the individual. Moreover, it is unknown how their effects depend on the physical urban environment in which people live and on personal characteristics and attitudes. The current project aims to get insight in how mobile personalized technology can motivate urban residents to become physically active. More specifically, we aim to gain insight into the effectiveness of elements within an exercise app (motivational feedback, goal setting, individualized messages, gaming elements (gamification) for making people more physically active, and how the effectiveness depends on characteristics of the individual and the urban setting. This results in a flexible exercise app for inactive citizens based on theories in data mining, machine learning, exercise psychology, behavioral change and gamification. The sensors on the mobile phone, together with sensors (beacons) in public spaces, combined with sociodemographic and land use information will generate a massive amount of data. The project involves analysis in two ways. First, a unique feature of our project is that we apply machine learning/data mining techniques to optimize the app specification for each individual in a dynamic and iterative research design (Sequential Multiple Assignment Randomised Trial (SMART)), by testing the effectiveness of specific messages given personal and urban characteristics. Second, the implementation of the app in Sao Paolo and Amsterdam will provide us with (big) data on use of functionalities, physical activity, motivation etc. allowing us to investigate in detail the effects of personalized technology on lifestyle in different geographical and cultural contexts.
Lack of physical activity in urban contexts is an increasing health risk in The Netherlands and Brazil. Exercise applications (apps) are seen as potential ways of increasing physical activity. However, physical activity apps in app stores commonly lack a scientific base. Consequently, it remains unknown what specific content messages should contain and how messages can be personalized to the individual. Moreover, it is unknown how their effects depend on the physical urban environment in which people live and on personal characteristics and attitudes. The current project aims to get insight in how mobile personalized technology can motivate urban residents to become physically active. More specifically, we aim to gain insight into the effectiveness of elements within an exercise app (motivational feedback, goal setting, individualized messages, gaming elements (gamification) for making people more physically active, and how the effectiveness depends on characteristics of the individual and the urban setting. This results in a flexible exercise app for inactive citizens based on theories in data mining, machine learning, exercise psychology, behavioral change and gamification. The sensors on the mobile phone, together with sensors (beacons) in public spaces, combined with sociodemographic and land use information will generate a massive amount of data. The project involves analysis in two ways. First, a unique feature of our project is that we apply machine learning/data mining techniques to optimize the app specification for each individual in a dynamic and iterative research design (Sequential Multiple Assignment Randomised Trial (SMART)), by testing the effectiveness of specific messages given personal and urban characteristics. Second, the implementation of the app in Sao Paolo and Amsterdam will provide us with (big) data on use of functionalities, physical activity, motivation etc. allowing us to investigate in detail the effects of personalized technology on lifestyle in different geographical and cultural contexts.