Background: Elective implant removal (IR) after fracture fixation is one of the most common procedures within (orthopedic) trauma surgery. The rate of surgical site infections (SSIs) in this procedure is quite high, especially below the level of the knee. Antibiotic prophylaxis is not routinely prescribed, even though it has proved to lower SSI rates in other (orthopedic) trauma surgical procedures. The primary objective is to study the effectiveness of a single intravenous dose of 2 g of cefazolin on SSIs after IR following fixation of foot, ankle and/or lower leg fractures. Methods: This is a multicenter, double-blind placebo controlled trial with a superiority design, including adult patients undergoing elective implant removal after fixation of a fracture of foot, ankle, lower leg or patella. Exclusion criteria are: an active infection, current antibiotic treatment, or a medical condition contraindicating prophylaxis with cefazolin including allergy. Patients are randomized to receive a single preoperative intravenous dose of either 2 g of cefazolin or a placebo (NaCl). The primary analysis will be an intention-to-treat comparison of the proportion of patients with a SSI at 90 days after IR in both groups. Discussion: If 2 g of prophylactic cefazolin proves to be both effective and cost-effective in preventing SSI, this would have implications for current guidelines. Combined with the high infection rate of IR which previous studies have shown, it would be sufficiently substantiated for guidelines to suggest protocolled use of prophylactic antibiotics in IR of foot, ankle, lower leg or patella. Trial registration Nederlands Trial Register (NTR): NL8284, registered on 9th of January 2020, https://www.trialregister.nl/trial/8284
DOCUMENT
Patients undergoing major surgery are at risk of complications and delayed recovery. Prehabilitation has shown promise in improving postoperative outcomes. Offering prehabilitation by means of mHealth can help overcome barriers to participating in prehabilitation and empower patients prior to major surgery. We developed the Be Prepared mHealth app, which has shown potential in an earlier pilot study.
MULTIFILE
PURPOSE: Optimizing return to work after knee arthroplasty is becoming more important because of the growing incidence of KA among workers and poor return to work outcomes. The purpose of this study is to investigate the feasibility of Back At work After Surgery (BAAS): an integrated clinical pathway for return to work after knee arthroplasty.METHOD: Working patients who received unicompartmental knee arthroplasty (UKA) or total knee arthroplasty (TKA) between January 2021 and November 2021, younger than 65 years and motivated to return to work were eligible to participate. Feasibility was investigated on five domains: reach, dose delivered, dose received, fidelity and patients' attitudes. These outcomes were obtained by a patient-reported questionnaire and an interview with the occupational case manager and medical case manager.RESULTS: Of the eligible 29 patients, eleven were willing to participate (response rate 38%; due to travel distance to and from the hospital). The dose delivered was between 91 and 100%, except information given about return to work from the orthopedic surgeon which was 18%. The dose received was 100%. For fidelity, case managers reported nine shortcomings for which five solutions were mentioned. In terms of patients' attitude, all patients were satisfied and one patient mentioned an improvement.CONCLUSIONS: In terms of reach, participation was low: only 29%. The BAAS clinical pathway seems feasible based on dose delivered, dose received, fidelity and patient attitudes. The next step is to assess the effectiveness of the BAAS clinical pathway for return to work.
DOCUMENT
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
The anterior cruciate ligament (ACL) is a strong rope-like tissue which connects the femur to the tibia in the knee joint. Its function is to provide structural stability to the knee while preventing unnatural forward movement of the tibia relative to the femur. Acute complete ACL ruptures during movements like knee hyperextension or sudden changes of direction (pivoting) damage two entities: the ligament itself and its nerve connections to the posterior tibial nerve (PTN). PTN innervation in the ACL is essential for: a) proprioception (e.g. perception of position and movement/acceleration experienced by the ligament), and b) stability of the knee joint. Upon ACL rupture, the orthopedic surgeon reconstructs the ACL with a graft from the hamstring, patellar or quadriceps tendon. After the surgery, the goal is to regain neuromuscular control and dynamic stabilization during rehabilitation as soon as possible for a quick return to sports and daily activities. However, surgeons are not able to reconstruct the nerve gap between the PTN and the grafted ligament due to the microscopic size of the innervation in the ACL. Not linking the PTN to the graft creates a disconnection between the knee joint and the spinal cord. To mitigate these disadvantages in ACL surgery, this study focuses on activating the growth of proprioception nerve endings using a ligament loaded with growth factors (neurotrophins). We hypothesize that neurotrophins will activate proprioceptive fibers of neurons close to the ACL. We describe graft fabrication steps and in vitro experiments to expand on the regeneration capacity of a commercially available ACL-like synthetic ligament called LARS. The results will bring the ACL regeneration field closer to having a graft that can aid patients in regaining mobility and stability during locomotion and running, confidence in the strength of the knee joint, and quick return to sports.