SEEV4-City is an innovation project funded by the European Union Interreg North Sea Region Programme. Its main objective is to demonstrate smart electric mobility and integration of renewable energy solutions and share the learnings gained. The project reports on the results of six Operational Pilots (OPs) which have different scales and are located in five different cities in four different countries in the North Sea Region.Loughborough OP (United Kingdom) is the smallest pilot, being a household with a bi-directional EV charging unit for the Nissan Leaf, a stationary battery, and a PV system. In the Kortrijk OP (Belgium), a battery system and a bi-directional charging unit for the delivery van (as well as a smart charging station for ebikes) were added to the energy system. In Leicester (United Kingdom), five unidirectional charging units were to be accompanied by four bi-directional charging units. The Johan Cruyff Arena OP is a larger pilot in Amsterdam, with a 2.8 MWh (partly) second life stationary battery storage for Frequency Control Regulation services and back-up power, 14 fast chargers and one bi-directional charger. Integrated into the existing energy system is a 1 MW PV system that is already installed on the roof. In the Oslo OP, 102 chargers were installed, of which two are fast chargers. A stationary battery energy storage system (BESS) supports the charging infrastructure and is used for peak shaving. The FlexPower OP in Amsterdam is the largest OP with over 900 EV charging outlets across the city, providing smart charging capable of reducing the energy peak demand in the evening.Before the start of the project, three Key Performance Indicators (KPIs) were determined:A. Estimated CO2 reductionB. Estimated increase in energy autonomyC. Estimated Savings from Grid Investment Deferral
In Europe, green hydrogen and biogas/green gas are considered important renewable energy carriers, besides renewable electricity and heat. Still, incentives proceed slowly, and the feasibility of local green gas is questioned. A supply chain of decentralised green hydrogen production from locally generated electricity (PV or wind) and decentralised green gas production from locally collected biomass and biological power-to-methane technology was analysed and compared to a green hydrogen scenario. We developed a novel method for assessing local options. Meeting the heating demand of households was constrained by the current EU law (RED II) to reduce greenhouse gas (GHG) emissions by 80% relative to fossil (natural) gas. Levelised cost of energy (LCOE) analyses at 80% GHG emission savings indicate that locally produced green gas (LCOE = 24.0 €ct kWh−1) is more attractive for individual citizens than locally produced green hydrogen (LCOE = 43.5 €ct kWh−1). In case higher GHG emission savings are desired, both LCOEs go up. Data indicate an apparent mismatch between heat demand in winter and PV electricity generation in summer. Besides, at the current state of technology, local onshore wind turbines have less GHG emissions than PV panels. Wind turbines may therefore have advantages over PV fields despite the various concerns in society. Our study confirms that biomass availability in a dedicated region is a challenge.
A large council building in Leicester, its central HQ called City Hall, aims to link on site renewable energy (PV) generation to electric vehicles (EVs) used by the Council staff. Leicester City Hall based staff are utilising four EVs for their work and charging these, when possible, from local renewable energy (PV) generation. This study presents the analysis of the use of four such EVs and their charging profiles that take place at the City Hall.