Despite the promises of learning analytics and the existence of several learning analytics implementation frameworks, the large-scale adoption of learning analytics within higher educational institutions remains low. Extant frameworks either focus on a specific element of learning analytics implementation, for example, policy or privacy, or lack operationalization of the organizational capabilities necessary for successful deployment. Therefore, this literature review addresses the research question “What capabilities for the successful adoption of learning analytics can be identified in existing literature on big data analytics, business analytics, and learning analytics?” Our research is grounded in resource-based view theory and we extend the scope beyond the field of learning analytics and include capability frameworks for the more mature research fields of big data analytics and business analytics. This paper’s contribution is twofold: 1) it provides a literature review on known capabilities for big data analytics, business analytics, and learning analytics and 2) it introduces a capability model to support the implementation and uptake of learning analytics. During our study, we identified and analyzed 15 key studies. By synthesizing the results, we found 34 organizational capabilities important to the adoption of analytical activities within an institution and provide 461 ways to operationalize these capabilities. Five categories of capabilities can be distinguished – Data, Management, People, Technology, and Privacy & Ethics. Capabilities presently absent from existing learning analytics frameworks concern sourcing and integration, market, knowledge, training, automation, and connectivity. Based on the results of the review, we present the Learning Analytics Capability Model: a model that provides senior management and policymakers with concrete operationalizations to build the necessary capabilities for successful learning analytics adoption.
MULTIFILE
Although governments are investing heavily in big data analytics, reports show mixed results in terms of performance. Whilst big data analytics capability provided a valuable lens in business and seems useful for the public sector, there is little knowledge of its relationship with governmental performance. This study aims to explain how big data analytics capability led to governmental performance. Using a survey research methodology, an integrated conceptual model is proposed highlighting a comprehensive set of big data analytics resources influencing governmental performance. The conceptual model was developed based on prior literature. Using a PLS-SEM approach, the results strongly support the posited hypotheses. Big data analytics capability has a strong impact on governmental efficiency, effectiveness, and fairness. The findings of this paper confirmed the imperative role of big data analytics capability in governmental performance in the public sector, which earlier studies found in the private sector. This study also validated measures of governmental performance.
MULTIFILE
Verslag van een presentatie. In onderzoeken naar de prioriteiten van HR-professionals staan analytics dan ook steevast onderaan het prioriteitenlijstje. Echter, nu elke dag meer data beschikbaar komen en alles is te meten, is dit niet langer een houdbaar standpunt. HR-professionals zullen op zijn minst moeten beseffen dat data waardevol zijn. Een Engelstalige definitie van People Analytics luidt: ‘The systematic identification and quantification of the people drivers of business outcomes, with the purpose of making better decisions.‘ Daarbij is het belangrijk om een goede businessvraag te stellen én – vervolgens –de resultaten van de analyse op overtuigende wijze over te brengen.
MULTIFILE
Hoofdstuk 10 in HRM Heden en Morgen. Dit hoofdstuk is geschreven vanuit de overtuiging dat een gemeenschappelijke taal en begrip van people analytics, evenals enkele basale wetenschappelijke principes waarop het gestoeld is, het jonge vakgebied in de praktijk naar een hoger niveau kunnen tillen. En daarmee de (toekomstige) HRM-professionals werkzaam op en rondom dit uitdagende thema in staat kunnen stellen (nog meer) impact te maken in hun organisatie. Het primaire doel van dit hoofdstuk is om de (toekomstige) professional die dit leest, aan het denken te zetten. Dit kan betekenen inspireren, verwarren, of duiden. Maar ook aanzetten tot het concreet aan de slag gaan met people analytics in de eigen organisatie, op de grens van wetenschap en praktijk, because that’s where the magic happens.
DOCUMENT
Full tekst beschikbaar voor gebruikers van Linkedin. Driven by technological innovations such as cloud and mobile computing, big data, artificial intelligence, sensors, intelligent manufacturing, robots and drones, the foundations of organizations and sectors are changing rapidly. Many organizations do not yet have the skills needed to generate insights from data and to use data effectively. The success of analytics in an organization is not only determined by data scientists, but by cross-functional teams consisting of data engineers, data architects, data visualization experts, and ("perhaps most important"), Analytics Translators.
LINK
De missie van mijn vakgebied is dat data analytics wordt toegepast om organisaties beter te maken. Ons onderzoek richt zich op de verbanden tussen het effectiever maken van organisaties, het verbeteren van individueel welzijn en maatschappelijke waarde. Onze faculteit wil duurzaam waarde realiseren voor organisaties, individu en maatschappij en de drie uitkomsten moeten in balans zijn. Daar staan we voor.
MULTIFILE
Ook binnen het human capital domein van organisaties wordt data-analyse steeds meer ingezet ten behoeve van evidence based besluitvorming, op zowel operationeel-, tactisch-, als strategisch niveau. Geïnspireerd door succesverhalen van organisaties die vele tientallen miljoenen aan besparingen hebben gerealiseerd, en tegelijkertijd de productiviteit en bevlogenheid van medewerkers hebben verbeterd, wordt People Analytics mainstream. Mede doordat de human capital kosten in organisaties (bv. recruitment, salaris, training, ziekteverzuim) gemiddeld ongeveer 60% van de totale organisatiekosten omvatten, is de potentiele invloed van People Analytics op het succes van organisaties aanzienlijk15. Bovendien is het human capital domein traditioneel een terrein waar veel data worden vastgelegd, denk bijvoorbeeld aan functionerings- en beoordelingsdata, data over trainingen en opleidingen, en salarisgegevens. Daarnaast zijn er buiten de organisatiegrenzen steeds meer social mediadata over potentiele medewerkers beschikbaar, die – uiteraard binnen de wettelijke en ethische kaders – gebruikt kunnen worden voor onder andere arbeidsmarktanalyse
DOCUMENT
Wanneer we over HRM en technologie spreken, kunnen we niet meer heen om HR analytics. Gefaciliteerd door de alsmaar groeiende hoeveelheid beschikbare data, oftewel Big Data, proberen organisaties momenteel volop waardevolle inzichten uit de bijna oneindige hoeveelheid data te genereren. Samenwerking tussen wetenschap en praktijk ligt voor de hand. De één kan goed analyseren, de ander beschikt over een schat aan data. Toch komen samenwerkingsverbanden vaak niet verder dan het inzetten van een afstudeerder of het verzorgen van een workshop. Anders gezegd: er wordt volop gedate en er vinden veel one-night stands plaats, maar tot duurzame relaties komt het vaak niet. Waarom niet? En hoe zouden we de samenwerking dan wel vorm kunnen geven?
DOCUMENT
Educational institutions in higher education encounter different thresholds when scaling up to institution-wide learning analytics. This doctoral research focuses on designing a model of capabilities that institutions need to develop in order to remove these barriers and thus maximise the benefits of learning analytics.
DOCUMENT
Big data analytics received much attention in the last decade and is viewed as one of the next most important strategic resources for organizations. Yet, the role of employees' data literacy seems to be neglected in current literature. The aim of this study is twofold: (1) it develops data literacy as an organization competency by identifying its dimensions and measurement, and (2) it examines the relationship between data literacy and governmental performance (internal and external). Using data from a survey of 120 Dutch governmental agencies, the proposed model was tested using PLS-SEM. The results empirically support the suggested theoretical framework and corresponding measurement instrument. The results partially support the relationship of data literacy with performance as a significant effect of data literacy on internal performance. However, counter-intuitively, this significant effect is not found in relation to external performance.
MULTIFILE