Although stressors are frequently linked to several negative health outcomes, experiencing stressors may be necessary for enhancing performance. At present, the literature is lacking a unified, comprehensive framework that accounts for both positive and negative outcomes following stressors. Therefore, we introduce the framework of hormesis, which has been applied in biological research for decades. According to hormesis, small-to-medium doses of a stressor can stimulate an organism's response, while large doses cause detrimental effects. In this article, we argue that these dose-response dynamics can be found in various domains of performance psychology (i.e., eustress and distress, psychological momentum, emotions, motivation, confidence, cognitive performance, training, skill acquisition, adversity, and trauma). Furthermore, hormesis also accounts for the inter- and intra-individual variability commonly found in responses to stressors. Finally, from an applied perspective, leveraging hormesis may stimulate new psychological interventions that mimic the well-known effects of (toxic) vaccinations at the level of behavior.
DOCUMENT
Species responding differently to climate change form ‘transient communities’, communities with constantly changing species composition due to colonization and extinction events. Our goal is to disentangle the mechanisms of response to climate change for terrestrial species in these transient communities and explore the consequences for biodiversity conservation. We review spatial escape and local adaptation of species dealing with climate change from evolutionary and ecological perspectives. From these we derive species vulnerability and management options to mitigate effects of climate change. From the perspective of transient communities, conservation management should scale up static single species approaches and focus on community dynamics and species interdependency, while considering species vulnerability and their importance for the community. Spatially explicit and frequent monitoring is vital for assessing the change in communities and distribution of species. We review management options such as: increasing connectivity and landscape resilience, assisted colonization, and species protection priority in the context of transient communities.
DOCUMENT
Plant photosynthesis and biomass production are associated with the amount of intercepted light, especially the light distribution inside the canopy. Three virtual canopies (n = 80, 3.25 plants/m2) were constructed based on average leaf size of the digitized plant structures: ‘small leaf’ (98.1 cm2), ‘medium leaf’ (163.0 cm2) and ‘big leaf’ (241.6 cm2). The ratios of diffuse light were set in three gradients (27.8%, 48.7%, 89.6%). The simulations of light interception were conducted under different ratios of diffuse light, before and after the normalization of incident radiation. With 226.1% more diffuse light, the result of light interception could increase by 34.4%. However, the 56.8% of reduced radiation caused by the increased proportion of diffuse light inhibited the advantage of diffuse light in terms of a 26.8% reduction in light interception. The big-leaf canopy had more mutual shading effects, but its larger leaf area intercepted 56.2% more light than the small-leaf canopy under the same light conditions. The small-leaf canopy showed higher efficiency in light penetration and higher light interception per unit of leaf area. The study implied the 3D structural model, an effective tool for quantitative analysis of the interaction between light and plant canopy structure.
MULTIFILE
Implementation of reliable methodologies allowing Reduction, Refinement, and Replacement (3Rs) of animal testing is a process that takes several decades and is still not complete. Reliable methods are essential for regulatory hazard assessment of chemicals where differences in test protocol can influence the test outcomes and thus affect the confidence in the predictive value of the organisms used as an alternative for mammals. Although test guidelines are common for mammalian studies, they are scarce for non-vertebrate organisms that would allow for the 3Rs of animal testing. Here, we present a set of 30 reporting criteria as the basis for such a guideline for Developmental and Reproductive Toxicology (DART) testing in the nematode Caenorhabditis elegans. Small organisms like C. elegans are upcoming in new approach methodologies for hazard assessment; thus, reliable and robust test protocols are urgently needed. A literature assessment of the fulfilment of the reporting criteria demonstrates that although studies describe methodological details, essential information such as compound purity and lot/batch number or type of container is often not reported. The formulated set of reporting criteria for C. elegans testing can be used by (i) researchers to describe essential experimental details (ii) data scientists that aggregate information to assess data quality and include data in aggregated databases (iii) regulators to assess study data for inclusion in regulatory hazard assessment of chemicals.
DOCUMENT
Echinoderm mass mortality events shape marine ecosystems by altering the dynamics among major benthic groups. The sea urchin Diadema antillarum, virtually extirpated in the Caribbean in the early 1980s by an unknown cause, recently experienced another mass mortality beginning in January 2022. We investigated the cause of this mass mortality event through combined molecular biological and veterinary pathologic approaches comparing grossly normal and abnormal animals collected from 23 sites, representing locations that were either affected or unaffected at the time of sampling. Here, we report that a scuticociliate most similar to Philaster apodigitiformis was consistently associated with abnormal urchins at affected sites but was absent from unaffected sites. Experimentally challenging naïve urchins with a Philaster culture isolated from an abnormal, field-collected specimen resulted in gross signs consistent with those of the mortality event. The same ciliate was recovered from treated specimens postmortem, thus fulfilling Koch’s postulates for this microorganism. We term this condition D. antillarum scuticociliatosis.
DOCUMENT
For children it is important to consume enough vegetables to establish healthy dietary patterns. Taste acceptance is an important factor contributing to food choice and consumption. Sweetness and sourness enhancement can increase acceptance of specific foods in children. The aim of this study was to determine the effect of sweetness and sourness enhancement on acceptance of cucumber and green capsicum purees in 5-6-year-old children. Three concentrations of sucrose (2, 5 and 10%) and citric acid (0.05, 0.08 and 0.15%) were added to cucumber and green capsicum purees. Children (n = 70, 5.7 ± 0.5 yrs) assessed acceptance of the vegetable purees using a 5-point hedonic facial scale. Sweetness enhancement significantly increased acceptance of cucumber purees (5 and 10% sucrose) and green capsicum purees (2 and 10% sucrose) compared to unmodified purees. Sourness enhancement (0.05, 0.08 and 0.15% citric acid) did not significantly influence acceptance of cucumber and green capsicum purees compared to unmodified purees. Children differed in acceptance of vegetable purees with added sucrose and citric acid. Sweetness likers (cucumber 77.1%, green capsicum 58.6%) accepted sucrose concentrations better than sweetness non-likers in both vegetables. Sourness likers (cucumber 50.0%, green capsicum 44.3%) accepted medium and high concentrations of citric acid better than sourness non-likers in cucumber and all citric acid concentrations in green capsicum. We conclude that enhancement of sweetness increases acceptance of cucumber and green capsicum purees in most children whereas enhancement of sourness is better accepted by only a few children. This study highlights the challenge to get children to better accept vegetables, since only sweetness enhancement improved acceptance while addition of sucrose is undesirable. For a small subset of children enhancing sourness might be an alternative strategy to increase acceptance of vegetables
DOCUMENT
For almost fifteen years, the availability and regulatory acceptance of new approach methodologies (NAMs) to assess the absorption, distribution, metabolism and excretion (ADME/biokinetics) in chemical risk evaluations are a bottleneck. To enhance the field, a team of 24 experts from science, industry, and regulatory bodies, including new generation toxicologists, met at the Lorentz Centre in Leiden, The Netherlands. A range of possibilities for the use of NAMs for biokinetics in risk evaluations were formulated (for example to define species differences and human variation or to perform quantitative in vitro-in vivo extrapolations). To increase the regulatory use and acceptance of NAMs for biokinetics for these ADME considerations within risk evaluations, the development of test guidelines (protocols) and of overarching guidance documents is considered a critical step. To this end, a need for an expert group on biokinetics within the Organisation of Economic Cooperation and Development (OECD) to supervise this process was formulated. The workshop discussions revealed that method development is still required, particularly to adequately capture transporter mediated processes as well as to obtain cell models that reflect the physiology and kinetic characteristics of relevant organs. Developments in the fields of stem cells, organoids and organ-on-a-chip models provide promising tools to meet these research needs in the future.
DOCUMENT
Bitterness has been suggested to be the main reason for the limited palatability of several vegetables. Vegetable acceptance has been associated with preparation method. However, the taste intensity of a variety of vegetables prepared by differentmethods has not been studied yet. The objective of this study is to assess the intensity of the five basic tastes and fattiness of ten vegetables commonly consumed in the Netherlands prepared by different methods using the modified Spectrum method. Intensities of sweetness, sourness, bitterness, umami, saltiness and fattiness were assessed for ten vegetables (cauliflower, broccoli, leek, carrot, onion, red bell pepper, French beans, tomato, cucumber and iceberg lettuce) by a panel (n = 9) trained in a modified Spectrum method. Each vegetable was assessed prepared by different methods (raw, cooked, mashed and as a cold pressed juice). Spectrum based reference solutions were available with fixed reference points at 13.3 mm (R1), 33.3mm(R2) and 66.7mm(R3) for each tastemodality on a 100mmline scale. For saltiness, R1 and R3 differed (16.7 mm and 56.7 mm). Mean intensities of all taste modalities and fattiness for all vegetables were mostly below R1 (13.3 mm). Significant differences (p b 0.05) within vegetables between preparation methods were found. Sweetness was the most intensive taste, followed by sourness, bitterness, fattiness, umami and saltiness.In conclusion, all ten vegetables prepared by different methods showed low mean intensities of all taste modalities and fattiness. Preparation method affected taste and fattiness intensity and the effect differed by vegetable type.
DOCUMENT
The evolution of emerging technologies that use Radio Frequency Electromagnetic Field (RF-EMF) has increased the interest of the scientific community and society regarding the possible adverse effects on human health and the environment. This article provides NextGEM’s vision to assure safety for EU citizens when employing existing and future EMF-based telecommunication technologies. This is accomplished by generating relevant knowledge that ascertains appropriate prevention and control/actuation actions regarding RF-EMF exposure in residential, public, and occupational settings. Fulfilling this vision, NextGEM commits to the need for a healthy living and working environment under safe RF-EMF exposure conditions that can be trusted by people and be in line with the regulations and laws developed by public authorities. NextGEM provides a framework for generating health-relevant scientific knowledge and data on new scenarios of exposure to RF-EMF in multiple frequency bands and developing and validating tools for evidence-based risk assessment. Finally, NextGEM’s Innovation and Knowledge Hub (NIKH) will offer a standardized way for European regulatory authorities and the scientific community to store and assess project outcomes and provide access to findable, accessible, interoperable, and reusable (FAIR) data.
DOCUMENT