The inherent complexity of planning at sea, called maritime spatial planning (MSP), requires a planning approach where science (data and evidence) and stakeholders (their engagement and involvement) are integrated throughout the planning process. An increasing number of innovative planning support systems (PSS) in terrestrial planning incorporate scientific models and data into multi-player digital game platforms with an element of role-play. However, maritime PSS are still early in their innovation curve, and the use and usefulness of existing tools still needs to be demonstrated. Therefore, the authors investigate the serious game, MSP Challenge 2050, for its potential use as an innovative maritime PSS and present the results of three case studies on participant learning in sessions of game events held in Newfoundland, Venice, and Copenhagen. This paper focusses on the added values of MSP Challenge 2050, specifically at the individual, group, and outcome levels, through the promotion of the knowledge co-creation cycle. During the three game events, data was collected through participant surveys. Additionally, participants of the Newfoundland event were audiovisually recorded to perform an interaction analysis. Results from survey answers and the interaction analysis provide evidence that MSP Challenge 2050 succeeds at the promotion of group and individual learning by translating complex information to players and creating a forum wherein participants can share their thoughts and perspectives all the while (co-) creating new types of knowledge. Overall, MSP Challenge and serious games in general represent promising tools that can be used to facilitate the MSP process.
LINK
Closing the loop of products and materials in Product Service Systems (PSS) can be approached by designers in several ways. One promising strategy is to invoke a greater sense of ownership of the products and materials that are used within a PSS. To develop and evaluate a design tool in the context of PSS, our case study focused on a bicycle sharing service. The central question was whether and how designers can be supported with a design tool, based on psychological ownership, to involve users in closing the loop activities. We developed a PSS design tool based on psychological ownership literature and implemented it in a range of design iterations. This resulted in ten design proposals and two implemented design interventions. To evaluate the design tool, 42 project members were interviewed about their design process. The design interventions were evaluated through site visits, an interview with the bicycle repairer responsible, and nine users of the bicycle service. We conclude that a psychological ownership-based design tool shows potential to contribute to closing the resource loop by allowing end users and service provider of PSS to collaborate on repair and maintenance activities. Our evaluation resulted in suggestions for revising the psychological ownership design tool, including adding ‘Giving Feedback’ to the list of affordances, prioritizing ‘Enabling’ and ‘Simplification’ over others and recognize a reciprocal relationship between service provider and service user when closing the loop activities.
DOCUMENT
The Maritime Spatial Planning (MSP) Challenge simulation platform helps planners and stakeholders understand and manage the complexity of MSP. In the interactive simulation, different data layers covering an entire sea region can be viewed to make an assessment of the current status. Users can create scenarios for future uses of the marine space over a period of several decades. Changes in energy infrastructure, shipping, and the marine environment are then simulated, and the effects are visualized using indicators and heat maps. The platform is built with advanced game technology and uses aspects of role-play to create interactive sessions; it can thus be referred to as serious gaming. To calculate and visualize the effects of planning decisions on the marine ecology, we integrated the Ecopath with Ecosim (EwE) food web modeling approach into the platform. We demonstrate how EwE was connected to MSP, considering the range of constraints imposed by running scientific software in interactive serious gaming sessions while still providing cascading ecological feedback in response to planning actions. We explored the connection by adapting two published ecological models for use in MSP sessions. We conclude with lessons learned and identify future developments of the simulation platform.
MULTIFILE
LINK
Closed loop or ‘circular’ production systems known as Circular Economy and Cradle to Cradle represent a unique opportunity to radically revise the currently wasteful system of production. One of the challenges of such systems is that circular products need to be both produced locally with minimum environmental footprint and simultaneously satisfy demand of global consumers. This article presents a literature review that describes the application of circular methodologies to education for sustainability, which has been slow to adopt circular systems to the curriculum. This article discusses how Bachelor and Master-level students apply their understanding of these frameworks to corporate case studies. Two assignment-related case studies are summarized, both of which analyze products that claim to be 'circular'. The students' research shows that the first case, which describes the impact of a hybrid material soda bottle, does not meet circularity criteria. The second case study, which describes products and applications of a mushroom-based material, is more sustainable. However, the students' research shows that the manufacturers have omitted transport from the environmental impact assessment and therefore the mushroom materials may not be as sustainable as the manufacturers claim. As these particular examples showed students how green advertising can be misleading, applying “ideal” circularity principles as part of experiential learning could strengthen the curriculum. Additionally, this article recommends that sustainable business curriculum should also focus on de-growth and steady-state economy, with these radical alternatives to production becoming a central focus of education of responsible citizens. https://doi.org/10.1016/j.jclepro.2019.02.005 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
The BMT provides the building blocks to develop a logic for a business model. In such a model the nature of value creation, how value creation is organized, and how transactions are taking shape are operationalized so that they meet the proposition. Practice shows that at present business models aimed at capturing multiple value creation can be divided into three major categories: (1) platform business models, (2) community-based (or collective) business models, and (3) circular business models. The three archetypes differ mainly in the way in which they create value, as well as the objective, the mechanism through which value creation takes place, and the infrastructural and technological requirements. When using the BMT, it is useful to consider at an early stage which business model archetype is dominant in the realization of the intended value proposition. Choosing a business model archetype might look straightforward, but it can be quite a tricky task.
LINK
Background:An eHealth tool that coaches employees through the process of reflection has the potential to support employees with moderate levels of stress to increase their capacity for resilience. Most eHealth tools that include self-tracking summarize the collected data for the users. However, users need to gain a deeper understanding of the data and decide upon the next step to take through self-reflection.Objective:In this study, we aimed to examine the perceived effectiveness of the guidance offered by an automated e-Coach during employees’ self-reflection process in gaining insights into their situation and on their perceived stress and resilience capacities and the usefulness of the design elements of the e-Coach during this process.Methods:Of the 28 participants, 14 (50%) completed the 6-week BringBalance program that allowed participants to perform reflection via four phases: identification, strategy generation, experimentation, and evaluation. Data collection consisted of log data, ecological momentary assessment (EMA) questionnaires for reflection provided by the e-Coach, in-depth interviews, and a pre- and posttest survey (including the Brief Resilience Scale and the Perceived Stress Scale). The posttest survey also asked about the utility of the elements of the e-Coach for reflection. A mixed methods approach was followed.Results:Pre- and posttest scores on perceived stress and resilience were not much different among completers (no statistical test performed). The automated e-Coach did enable users to gain an understanding of factors that influenced their stress levels and capacity for resilience (identification phase) and to learn the principles of useful strategies to improve their capacity for resilience (strategy generation phase). Design elements of the e-Coach reduced the reflection process into smaller steps to re-evaluate situations and helped them to observe a trend (identification phase). However, users experienced difficulties integrating the chosen strategies into their daily life (experimentation phase). Moreover, the identified events related to stress and resilience were too specific through the guidance offered by the e-Coach (identification phase), and the events did not recur, which consequently left users unable to sufficiently practice (strategy generation phase), experiment (experimentation phase), and evaluate (evaluation phase) the techniques during meaningful events.Conclusions:Participants were able to perform self-reflection under the guidance of the automated e-Coach, which often led toward gaining new insights. To improve the reflection process, more guidance should be offered by the e-Coach that would aid employees to identify events that recur in daily life. Future research could study the effects of the suggested improvements on the quality of reflection via an automated e-Coach.
DOCUMENT
This study evaluates the maximum theoretical exposure to radiofrequency (RF) electromag- netic fields (EMFs) from a Fifth-generation (5G) New Radio (NR) base station (BS) while using four commonly used mobile applications: YouTube for video streaming, WhatsApp for voice calls, Instagram for posting pictures and videos, and running a Video game. Three factors that might affect exposure, i.e., distance of the measurement positions from the BS, measurement time, and induced traffic, were examined. Exposure was assessed through both instantaneous and time-averaged extrapolated field strengths using the Maximum Power Extrapolation (MPE) method. The former was calculated for every measured SS-RSRP (Secondary Synchronization Reference Signal Received Power) power sample obtained with a sampling resolution of 1 second, whereas the latter was obtained using a 1-min moving average applied on the applications’ instantaneous extrapolated field strengths datasets. Regarding distance, two measurement positions (MPs) were selected: MP1 at 56 meters and MP2 at 170 meters. Next, considering the measurement time, all mobile application tests were initially set to run for 30 minutes at both MPs, whereas the video streaming test (YouTube) was run for an additional 150 minutes to investigate the temporal evolution of field strengths. Considering the traffic, throughput data vs. both instantaneous and time-averaged extrapolated field strengths were observed for all four mobile applications. In addition, at MP1, a 30-minute test without a User Equipment (UE) device was conducted to analyze exposure levels in the absence of induced traffic. The findings indicated that the estimated field strengths for mobile applications varied. It was observed that distance and time had a more significant impact than the volume of data traffic generated (throughput). Notably, the exposure levels in all tests were considerably lower than the public exposure thresholds set by the ICNIRP guidelines.INDEX TERMS 5G NR, C-band, human exposure assessment, mobile applications, traffic data, maximum extrapolation method, RF-EMF.
MULTIFILE
This article seeks to contribute to the literature on circular business model innovation in fashion retail. Our research question is which ‘model’—or combination of models—would be ideal as a business case crafting multiple value creation in small fashion retail. We focus on a qualitative, single in-depth case study—pop-up store KLEER—that we operated for a duration of three months in the Autumn of 2020. The shop served as a ‘testlab’ for action research to experiment with different business models around buying, swapping, and borrowing second-hand clothing. Adopting the Business Model Template (BMT) as a conceptual lens, we undertook a sensory ethnography which led to disclose three key strategies for circular business model innovation in fashion retail: Fashion-as-a-Service (F-a-a-S) instead of Product-as-a-Service (P-a-a-S) (1), Place-based value proposition (2) and Community as co-creator (3). Drawing on these findings, we reflect on ethnography in the context of a real pop-up store as methodological approach for business model experimentation. As a practical implication, we propose a tailor-made BMT for sustainable SME fashion retailers. Poldner K, Overdiek A, Evangelista A. Fashion-as-a-Service: Circular Business Model Innovation in Retail. Sustainability. 2022; 14(20):13273. https://doi.org/10.3390/su142013273
DOCUMENT
A transition from a linear economy to a more sustainable and circular economy requires different business models. In this chapter, we provide you with an introduction to the nature and logic of business models. In essence, a business model is a description of how value creation between parties or partners is organized, at a particular moment, in a specific context, and given available resources. Conventional business modelling approaches have several weaknesses---the main point of criticism being their focus on creating financial value. With the Business Model Template (BMT), we try to resolve most of these criticisms. To do so we introduce three archetypal business models: the platform, community, and circular economy business models. This chapter provides an overview on how, over three stages and ten building blocks that together make up the Business Model Template, these archetypal business models will be used.
LINK