The recent bank collapses and bailouts highlight the fragility of the banking system and our bank deposits. The digital euro is an opportunity to reconfigure our monetary system to serve the interests of people and society, by making money safer and more inclusive. However, the European Central Bank’s (ECB) current proposal for a digital euro falls short of this potential. The current plan relies heavily on private financial intermediaries and envisions putting important limitations on the use of digital euros, thereby impacting its capacity to be a universally accessible public good and risking undermining the uptake of the digital euro. By heeding to the bank lobby and baking their interests into the design of the digital euro, the ECB is missing an opportunity to develop an appealing and public digital alternative to private bank deposits. The digital euro must be developed with the aim of benefiting people and society over private interests, and these considerations should guide its design. In the short term, the digital euro should: 1. Be universally accessible. People should be able to access digital euros through a diverse range of intermediaries, which include non-profit and public entities. Implementing a tiered identification system for account-based digital euros, and introducing a value-based option, would ensure the availability of digital euros to the most vulnerable segments of society. 2. Be free of cost for users. Any future legislative framework on the digital euro should include a list of basic services that should be provided for free to users, such as opening and managing an account and the provision of a payment instrument (e.g. a card). 3. Offer a high level of privacy and data protection. Cash, which is fully anonymous, should be used as the baseline when developing the digital euro. A value-based option should be introduced alongside an account-based one, and it should be designed to be fully anonymous. For the account-based option, a ‘privacy threshold’ can ensure that users’ data for small transactions is protected. 4. Have a clear European Central Bank branding. Clear branding will help to differentiate public digital euros from private bank deposits. 5. Bring resilience to the payment system. By providing an offline value-based option, and by ensuring that the digital euro’s legal and technical core infrastructure is public and works independently of any private system, we can offer an alternative to existing payment rails and increase resiliency in case of outages. The digital euro is also an opportunity to improve financial stability by transforming the banking system, and helping central banks to more effectively carry out their monetary policy. The design of the digital euro should be flexible enough to allow for the achievement of these longterm goals, and more research should be conducted to explore how different features could help achieve them. For instance, a digital euro without any holding limit could reduce moral hazard in the banking sector, and the adjustment of interest rates on digital euro deposits and direct monetary transfers could improve the transmission of monetary policy.
DOCUMENT
De nationale en internationale ambities op het vlak van Circulaire Economie zijn groot, en veel bedrijven en organisaties dragen bewust of onbewust reeds bij aan de Circulaire Economie. Een Circulaire Economie reguleert het fundamenteel anders omgaan met grondstoffen, door het hergebruik van producten en grondstoffen centraal te stellen en afval en schadelijke emissies naar bodem, water en lucht zoveel mogelijk te voorkomen. De belofte van de Circulaire Economie is om verschillende vormen van duurzaamheid op verschillende niveaus te organiseren als een liefst integrale economische opgave. Hierbij zijn het voorkómen van afval en het (her)waarderen van materie belangrijke uitgangspunten. Naast technische ontwikkelingen zijn hier ook sociale en zelfs systeeminnovaties bij nodig. Daar hoort bijvoorbeeld ook bewustwording, gedragsbeïnvloeding en zakelijke haalbaarheid bij. De transformatie naar een circulaire samenleving is een grootschalige maatschappelijke transitie. Hogeschool Inholland beweegt mee met deze ontwikkeling in de maatschappij, door middel van onderzoek en onderwijs in samenwerking met het werkveld. Deze position paper is een verkenning van bestaande theorieën, maatschappelijk debat, relevante beleidskaders en financieringsinstrumenten (het externe beeld), alsmede een eerste inventarisatie gericht op het aanbod binnen Inholland (het interne beeld), om daarmee een dialoog te initiëren over een betere positionering van Inholland op het vlak van Circulaire Economie. Als vervolgstappen worden o.a. een verdere inventarisatie van het aanbod en betere inbedding binnen verschillende opleidingen en een versterking en bundeling van onderzoekscapaciteit door middel van een domeinoverstijgende aanpak aanbevolen, alsmede een marktonderzoek om vraag en aanbod beter op elkaar te kunnen laten aansluiten. Mede op basis van deze bouwstenen kan de communicatie en positionering van Inholland op het vlak van Circulaire Economie, zowel intern als extern, verstevigd worden. Deze position paper is een groeidocument, dus de deur blijft open staan om in de toekomst nieuwe kennis, inzichten, aanbevelingen en interventies mee te nemen.
DOCUMENT
Hoofdstuk 2 uit Position paper Learning Communities van Netwerk learning Communities Grote maatschappelijke uitdagingen op het gebied van vergrijzing, duurzaamheid, digitalisering, segregatie en onderwijskwaliteit vragen om nieuwe manieren van werken, leren en innoveren. In toenemende mate wordt daarom ingezet op het bundelen van kennis en expertise van zowel publieke als private organisaties, die elkaar nodig hebben om te innoveren en complexe vraagstukken aan te pakken. Het concept ‘learning communities’ wordt gezien als dé oplossing om leren, werken en innoveren anders met elkaar te verbinden: collaboratief, co-creërend en contextrijk. Vanuit het Netwerk Learning Communities is een groep onafhankelijk onderzoekers van een groot aantal Nederlandse kennisinstellingen aan de slag gegaan met een kennissynthese rondom het concept ‘Learning Community’. Het Position paper is een eerste aanzet tot kennisbundeling. Een ‘levend document’ dat in de komende tijd verder aangevuld en verrijkt kan worden door onderzoekers, praktijkprofessionals en beleidsmakers.
DOCUMENT
In this proposal, a consortium of knowledge institutes (wo, hbo) and industry aims to carry out the chemical re/upcycling of polyamides and polyurethanes by means of an ammonolysis, a depolymerisation reaction using ammonia (NH3). The products obtained are then purified from impurities and by-products, and in the case of polyurethanes, the amines obtained are reused for resynthesis of the polymer. In the depolymerisation of polyamides, the purified amides are converted to the corresponding amines by (in situ) hydrogenation or a Hofmann rearrangement, thereby forming new sources of amine. Alternatively, the amides are hydrolysed toward the corresponding carboxylic acids and reused in the repolymerisation towards polyamides. The above cycles are particularly suitable for end-of-life plastic streams from sorting installations that are not suitable for mechanical/chemical recycling. Any loss of material is compensated for by synthesis of amines from (mixtures of) end-of-life plastics and biomass (organic waste streams) and from end-of-life polyesters (ammonolysis). The ammonia required for depolymerisation can be synthesised from green hydrogen (Haber-Bosch process).By closing carbon cycles (high carbon efficiency) and supplementing the amines needed for the chain from biomass and end-of-life plastics, a significant CO2 saving is achieved as well as reduction in material input and waste. The research will focus on a number of specific industrially relevant cases/chains and will result in economically, ecologically (including safety) and socially acceptable routes for recycling polyamides and polyurethanes. Commercialisation of the results obtained are foreseen by the companies involved (a.o. Teijin and Covestro). Furthermore, as our project will result in a wide variety of new and drop-in (di)amines from sustainable sources, it will increase the attractiveness to use these sustainable monomers for currently prepared and new polyamides and polyurethanes. Also other market applications (pharma, fine chemicals, coatings, electronics, etc.) are foreseen for the sustainable amines synthesized within our proposition.
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
Many lithographically created optical components, such as photonic crystals, require the creation of periodically repeated structures [1]. The optical properties depend critically on the consistency of the shape and periodicity of the repeated structure. At the same time, the structure and its period may be similar to, or substantially below that of the optical diffraction limit, making inspection with optical microscopy difficult. Inspection tools must be able to scan an entire wafer (300 mm diameter), and identify wafers that fail to meet specifications rapidly. However, high resolution, and high throughput are often difficult to achieve simultaneously, and a compromise must be made. TeraNova is developing an optical inspection tool that can rapidly image features on wafers. Their product relies on (a) knowledge of what the features should be, and (b) a detailed and accurate model of light diffraction from the wafer surface. This combination allows deviations from features to be identified by modifying the model of the surface features until the calculated diffraction pattern matches the observed pattern. This form of microscopy—known as Fourier microscopy—has the potential to be very rapid and highly accurate. However, the solver, which calculates the wafer features from the diffraction pattern, must be very rapid and precise. To achieve this, a hardware solver will be implemented. The hardware solver must be combined with mechatronic tracking of the absolute wafer position, requiring the automatic identification of fiduciary markers. Finally, the problem of computer obsolescence in instrumentation (resulting in security weaknesses) will also be addressed by combining the digital hardware and software into a system-on-a-chip (SoC) to provide a powerful, yet secure operating environment for the microscope software.
Lectorate, part of NHL Stenden Hogeschool